Química del suelo

Edafología. Hidrografía. Calidad del agua de riego. Salino. Contaminación. Abonado. Fertilizante. Ácido

  • Enviado por: Anita
  • Idioma: castellano
  • País: España España
  • 15 páginas

publicidad
cursos destacados
Cálculo Diferencial
Cálculo Diferencial
En este curso se tratan temas básicos del cálculo diferencial como son: Límites, Derivación...
Ver más información

Cálculo Integral
Cálculo Integral
Curso básico de cálculo integral de una sola variable. Se parte desde los conceptos básicos como...
Ver más información


Cuaderno de Prácticas:

Química del

Suelo

EVALUACIÓN DE LA CALIDAD DE UN AGUA DE RIEGO

  • Descripción de la muestra de agua

  • Colector

    AR-IV

    Fecha

    13/II/2003

    Propietario

    Ayuntamiento de Pamplona

    Tipo de colector

    Río

    Municipio

    Pamplona

    Distancia al pueblo más cercano

    en población

    Profundidad

    45 cm

    Profundidad de muestreo

    entre 10 y 20 cm

    Temperatura

    14º C

    Olor

    no se aprecia

    Color

    no se aprecia

    Uso

    se utiliza para riego

    Área para la que se usa en hectáreas

    alrededor de 2 ha

    Cultivos

    hortícolas

    Observaciones

    punto situado en el curso del río Arga, a la salida de Pamplona por el barrio San Jorge, junto al puente de Miluce

  • Análisis

    • Conductividad eléctrica

    C.E. = 224S/cm = 0.224 mS/cm

    • Determinación de Na+:

    Na+ en agua = 1.618 mg/l = 0.07 meq/l

    • Determinación de Ca y Mg (valoración con EDTA)

    Ca y Mg = 3.1 mg/l = 6.2 meq/l

    • Determinación del Ca (valoración con EDTA a pH 12 para que el Mg precipite)

    Ca = 2.7 mg/l = 5.4 meq/l

    • Determinación del Mg

    Mg = 3.1 - 2.7 = 0.4 mg/l = 0.8 meq/l

    • Determinación de CO32- y HCO3-

    CO32- = 0 meq/l

    HCO3- = 4 meq/ ml = 4 10-3 meq/l


  • Interpretación del análisis

    • Contenido total de sales

    C= C.E. x 0,64 = 0,224 x 0,64 = 0,14 mg/l

    • R.A.S. (Cationes en meq/l)

    'Química del suelo'

    • Carbonato sódico residual

    C.R.S. = (CO3-2+ HCO3-) - (Ca+2 + Mg+2) = (0 + 4 10-3) - (5,4 + 0,8) = -6,2

    • Dureza

    Grados franceses = (Ca+2 x 2.5 + Mg+2 x 4.12)/10 = ((2,7 x 2,5) + (0,4 x 4,12))/10 = 0,83

    Por la tabla de interpretación deducimos que se trata de un agua muy blanda.

    • Clasificación según la salinidad

    Teniendo en cuenta los valores:

    C.E. = 224 S/cm

    R.A.S = 0,04

    Según el gráfico de clasificación esta agua sería de una calidad C1 S1 y por tanto un agua de buena calidad apta para riego.


    ANÁLISIS DE SUELOS

  • Descripción del suelo a estudio:

  • Localidad

    Arizkun

    Fecha de muestreo

    26/I/2003

    Agente de muestro

    David Elustondo Valencia y Esther Lasheras Adot

    Agricultor

    Jesús Goñi Landa

    Superficie

    500 m2

    Drenaje

    Muy bueno

    Pendiente

    Prácticamente nula

    Características del cultivo anterior

    Cultivo hortícola

    Incrustaciones de sales

    No se han encontrado

    Profundidad del suelo

    Alrededor de 2 metros

    Profundidad de muestreo

    Entre 10 y 35 cm

    Pedregosidad

    Leve a muy leve

  • Datos

    • Prueba previa de salinidad

    PPS: 115S/cm = 0,115 mS/cm

    Se va a considerar un suelo no salino debido a que la PPS presenta un valor menor de 0,2 mohms/cm.

    • Textura

    Por las características observadas en nuestra muestra de suelo se podría decir que presenta una textura limosa, perteneciente, por tanto, al grupo de textura fina.

    • pH

    Dos medidas de pH

    • PH activo (agua) = 8,49

    • PH potencial (KCl) = 6,8


    • Materia orgánica

    La materia orgánica da determinadas propiedades al suelo:

    Propiedades físicas: mejora la estructura del suelo

    Propiedades químicas:

    - aporta nutrientes

    - complejo arcillohúmico: los ácidos húmicos estimulan el crecimiento radicular

    - degrada sustancias (pesticidas)

    Para la determinación de la materia orgánica será necesario primero determinar el porcentaje de carbono orgánico en el suelo. El tanto por ciento de materia orgánica se obtendrá mediante un coeficiente:

    % carbono orgánico oxidable = 'Química del suelo'
    = 'Química del suelo'
    = 9,18

    % materia orgánica = 9,18 x 1,72 =15,7896

    • Determinación del nitrógeno total

    % N = V x N x 0,014 x 100/10 x 100/5 = 1,1 x 0,017 x 0,014 x 1000/5 = 0,052

    • Determinación del potasio asimilable

    Para calcular el K en ppm del suelo se procede del siguiente modo:

    Ppm de K en el suelo = 'Química del suelo'
    = 'Química del suelo'
    = 165 ppm

    • Determinación del fósforo

    La determinación del fósforo se va ha hacer por colorimetría. A continuación se presentan los datos obtenidos de las distintas absorbancias así como el gráfico obtenido, la línea de tendencia y su correspondiente ecuación, de la que obtendremos la concentración de fósforo de nuestra muestra.


    CONCENTRACIÓN

    ABSORBANCIA

    Blanco

    100

    2

    94,8

    14

    56,4

    20

    45,4

    'Química del suelo'

    Teniendo en cuenta nuestro dato de absorbancia (63,4) y la ecuación de la recta obtenida, logramos conocer la concentración de fósforo.

    y = -2,8341 x + 99,657

    63,4 = -2,8341x + 99,657

    x = 12,79 ppm


    ANEXO I: Suelo salino

    En caso de tener un suelo salino (CE > 0,2 mohms/cm) se hace necesario obtener el extracto de una pasta saturada. Esta pasta se obtiene añadiendo a 100 gramos de suelo una cantidad determinada de agua hasta que adquiera una consistencia liquida, comprobando que no queda agua libre pero que la pasta es fluida. Se deja reposar para luego añadir agua de nuevo si es necesario. Después de esto se filtra al vacío y a partir del extracto obtenido se recogen los datos.

  • Descripción

  • Localidad

    Arguedas

    Fecha de muestreo

    2/II/2003

    Agente de muestreo

    David Elustondo Valencia y Esther Lasheras Adot

    Agricultor

    Pedro Rada Salinas

    Superficie

    3500 m2

    Drenaje

    Limitado

    Pendiente

    10%

    Características del cultivo anterior

    Secano

    Incrustaciones de sales

    Yesos

    Profundidad del suelo

    De 30 cm a 1 m

    Profundidad del suelo

    Entre 10 y 35 cm

    Pedregosidad

    Leve a moderada


  • Datos

    • PPS: 643S/cm (mayor de 0,2 mohms/cm por lo que se deduce que se trata de un suelo salino)

    • PH: 4,74 (se mide de la pasta saturada, no del extracto)

    • C.E.: 173,9S/cm = 0,17 mohms/cm

    • Ca+++Mg++: 5meq/100g = 50 meq/l

    • Ca++: 3meq/100g = 30 meq/l

    • Mg++: 2 meq/100g = 20 meq/l

    • Na+: 16.81 mg/l = 0,73 meq/l

  • Cálculos

  • R.A.S.= 3,362

    PSI = 3,57

  • Interpretación de resultados:

  • Para la interpretación del resultado nos vamos a la gráfica en la que introducimos los valores obtenidos en el P.S.I. y el R.A.S., en este caso aparece que el suelo muestreado es normal.


    ANEXO II: Suelo Ácido

    Localidad

    Urkiaga

    Fecha de muestreo

    27 de enero 2003

    Agente de muestreo

    David Elustondo Valencia y Esther Lasheras Adot

    Agricultor

    Comunal del Valle de Erro

    Superficie

    12.500 m2

    Drenaje

    Muy bueno

    Pendiente

    30 %

    Características del cultivo anterior

    Forestal (hayedo)

    Incrustaciones de sales

    No se han encontrado

    Profundidad del suelo

    2-3 m

    Profundidad del muestreo

    Entre 10-35 cm

    Pedregosidad

    Leve a muy leve

    Con el fin de determinar si este suelo es ácido y tomar las medidas oportunas, realizamos los siguientes análisis y cálculos.

    • pH:

    Potencial = 4,08

    Activo = 8,5

    Paranitrofenol = 5,58

    Podemos apreciar que estamos ante un suelo ácido, ya que su pH potencial es de 4,05. Para resolver problemas de acidez, lo que normalmente se hace es encalar el suelo. Esto se puede llevar a cabo de dos formas distintas: aplicando carbonato cálcico (no baja en profundidad pero dura menos tiempo) o aplicando oxalato cálcico (dura menos tiempo pero da más problemas porque con el tiempo baja en profundidad). También puede usarse hidróxido cálcico, carbonato cálcico magnésico o silicato cálcico. Con el encalado de lo que se trata es de aumentar el pH un punto por año, aunque dependiendo de las exigencias del cultivo, la cantidad aplicada variará. La mayoría de cultivos requieren pH alrededor de 5,5 mientras que algunos cultivos más exigentes necesitan pH entorno a 6,5.

    La cantidad de cal que se necesita aplicar se calcula de la siguiente manera:

    Tm CaCO3/Ha = 10 x ((pH-pH´)/(7-pH´)) x (7-pH´´)


    Siendo: pH = pH que queremos conseguir

    pH´ = pH inicial del suelo en suspensión de KCl 0,1 N

    pH´´ = pH adquirido por la solución tampón en contacto con el suelo

    Por lo tanto, a nuestro suelo habría que aplicar la siguiente cantidad de cal:

    Tm CaCO3/Ha = 10 x ((6,5-4,08)/(7-4,08)) x (7-5,58) = 11,76


    CONSEJOS DE ABONADO

  • Evaluación de la fertilidad

  • Tabla de resultados

    PPS

    115 S/cm

    Textura

    Limosa

    PH activo

    8,5

    PH potencial

    6,8

    % C

    9,18

    % N

    0,052

    K

    165 ppm

    P

    12,79 ppm

    • Materia orgánica

    Los cálculos se han realizado en el apartado anterior por lo que aquí solo aparece el resultado.

    % MO = 15,79

    • Relación C/N

    C/N = 9,18/0,052= 176,53

  • Consejos de abonado

    • Cultivo elegido

    Como cultivo adecuado se ha elegido el maíz (Zea mays). A pesar de que la extensión del terreno es escasa, por las características del terreno y el clima de la zona creemos que el maíz es uno de los cultivos más adecuados para este caso.

    • Información básica sobre requerimientos del cultivo:

    Condiciones óptimas:

    pH: entre 5,5 y 7.

    Textura: suelos francos y franco-limosos.


    Condiciones climáticas: germina a 10º C a 8 cm de profundidad. Vegeta hasta los 9,4º C y se desarrolla entre 20 y 30º C. necesita entre 600-700 l/m2 de agua.

    Extracciones de nutrientes en kg para una producción de 1.000 kg:

    N = 26-32

    P2O5 = 10-13

    K2O = 22-30

    Fertilización usual para una producción de 9.200 kg/ha:

    N = 160-240

    P2O5 = 80-120

    K2O = 80-120

    Abonado de sementera: aplicación de parte del N y todo el P y K.

    Abonado de cobertera: 30-70% del N, según la longitud del ciclo vegetativo, en una o dos aplicaciones, la primera cuando la planta tiene 40 cm de altura y la segunda en la floración.

    • Análisis del suelo

    A fin de no repetir de nuevo los resultados de los análisis efectuados durante las prácticas se remite en este apartado a la tabla del apartado anterior.

    • Otros datos

    • Densidad aparente

      1,3 g/cm3

      Profundidad

      2 m

      Cultivo

      Maíz

      Producción esperada

      9.000Kg/ha

      Sistema

      Regadío

      Extracciones por la cosecha

      261 Kg de N; 99 Kg de P2O5: 234 kg de K2O


    • Abonado de corrección

    • En este caso el pH del suelo es adecuado para el cultivo que se desea desarrollar, de modo que una enmienda caliza se considera innecesaria.

      Así mismo dada la abundancia de materia orgánica presente en el suelo, así como la elevada relación C/N no procede aplicar una enmienda orgánica.

      Fósforo:

      kg P205/ha = 0,229 x h x da (P2-P1) = 0,229 x 200 x 1,3 (15 - 12,79) = 131,58

      Potasio:

      kg K20/ha = 0,12 x h x da(K2-K1) = 0,12 x 200 x 1,3 (195 - 165) = 936

      La cantidad de potasio calculada es excesivamente alta, debido probablemente a la profundidad que presenta el suelo.

    • Abonado de restitución:

    • Nitrógeno: 261 + 10% pérdidas = 287 kg/ha

      Fósforo: 99 + 10% pérdidas = 110 kg/ha

      Potasio: 234 + 10% pérdidas = 257 kg/ha

    • Abonado total.

    • Nitrógeno: 287 Kg/ha

      Fósforo: 110 + 131,58 = 242 kg/ha

      Potasio: 936+ 257 = 1.193 kg/ha

      Dados los resultados obtenidos en el cálculo del abonado total y las proporciones que presentan los diversos abonos complejos, el que más se ajusta a las necesidades del cultivo es el de proporciones 8-24-24, que se aplicará en sementera junto con un abono potásico. Se aplicarán 1000kg de abono /ha que aportarán:

      80 kg de N/ha

      240 kg de P2O5/ha

      240 kg de K2O/ha


      Quedarían por cubrir:

      N: 287 - 80 = 207 kg/ha que se aplicarán en cobertera posteriormente.

      P: 242 - 240 = 2 kg/ha, que por tratarse de una cantidad pequeña se considera inapreciable.

      K: 1.193 - 240 = 953 kg/ha

      Para completar la deficiencia de potasio, se añadirán 1.588 kg/ha de cloruro potásico al 60% K2O.

      El abonado de cobertera se aplicará en dos partes:

      - 223 kg/ha cuando la planta mida 40 cm

      - 226 kg/ha en la floración

      El abono utilizado es urea al 46% N. Se ha elegido este abono ya que permanece durante más tiempo en el suelo, asegurando así una continuidad en la disponibilidad de nitrógeno para el cultivo.

      OBSERVACIONES FINALES:

      La cantidad de materia orgánica, así como la relación C/N obtenida, nos parecen muy elevadas para un suelo de estas características; puede que hayamos cometido algún error a la hora de analizar el suelo. Por otra parte, también nos parece excesivamente alta la cantidad de abono potásico necesaria.