Coordenadas polares

Radianes. Polos. Eje polar. Ángulos. Circunferencias. Rectas. Gráficos

  • Enviado por: Maxx
  • Idioma: castellano
  • País: Colombia Colombia
  • 5 páginas
publicidad
cursos destacados
Matemáticas dentro y fuera del Aula
UNED
La enseñanza de la asignatura de matemáticas, como cualquier otra disciplina del currículum, debe tener su...
Solicita InformaciÓn


publicidad

Coordenadas polares

En un sistema de coordenadas rectangulares o cartesiano se puede localizar un punto con una sola pareja de puntos (x,y) estos valores son las distanicas dirigidas, partiendo del origen, desde los ejes x e y respectivamente. El origen es el punto donde se intersectan los dos ejes coordenados.

'Coordenadas polares'

Otra forma de representar puntos en el plano es empleando coordendas polares, en este sistema se necesitan un ángulo (q) y una distancia (r). Para medir q, en radianes, necesitamos una semirrecta dirigida llamada eje polar y para medir r, un punto fijo llamado polo.

'Coordenadas polares'

Si queremos localizar un punto (r,q) en este sistema de coordenadas, lo primero que tenemos que hacer es trazar una circunferencia de radio r, después trazar una línea con un ángulo de inclinación q y, por último, localizamos el punto de intersección entre la circunferencia y la recta; este punto será el que queríamos localizar.

A continuación localizamos varios puntos en el plano polar.

'Coordenadas polares'

Observa que hay tres circunferencias, todos los puntos sobre estas circunferencias tienen una distancia al polo igual al radio de ella. Lo único que hace falta es encontrar el ángulo de inclinación. Para medir el ángulo es necesario tomar en cuenta si este es positivo o negativo. Si es positivo hay que medirlo en sentido contrario al movimiento de las manecillas del reloj y si es negativo, a favor del movimiento de las manecillas del reloj.

'Coordenadas polares'

'Coordenadas polares'

Como ves los ángulos pueden ser negativos dependiendo de cómo se midan a partir del eje polar,

'Coordenadas polares'

también podemos tener distancias "negativas": ya que hayamos localizado el ángulo, la recta que parte del polo en esa dirección tendrán un radio positivo y los puntos que estén sobre la prolongación de esta recta en sentido contrario al polo tendrán un radio negativo. Por ejemplo:

'Coordenadas polares'

Con estos conceptos básicos de localización de puntos en el sistema de coordenadas polares, podemos graficar funciones y no solo puntos.
En este tipo de funciones la variable independiente es q y la dependiente es r, así que las funciones son del tipo r = r(q). El método para graficar estas funciones es el siguiente, primero graficamos la función r = r(q) en coordenadas rectangulares y apartar de esa gráfica trazamos la correspondiente en polares. Guiándonos con la dependencia de r con respecto a q.

Recordemos que q es la variable independiente y va de 0 a 2p generalmente. Por ejemplo la función r = q tiene como gráfica en rectangulares

'Coordenadas polares'

A la izquierda vemos que el radio depende linealmente con el ángulo, es decir que el radio crecerá y tomará los mismos valores que el ángulo. Y a la derecha tenemos esta gráfica en coordenadas polares se ve claro esta dependencia del radio con el ángulo. A esta gráfica se le llama Espiral de Arquímedes

'Coordenadas polares'

Mostraremos a continuación algunas gráficas en coordenadas polares.

r = sen(2q)

'Coordenadas polares'

'Coordenadas polares'

r = sen(3q)

'Coordenadas polares'

'Coordenadas polares'

r = sen(4q)

'Coordenadas polares'

'Coordenadas polares'

r = sen(5q)

'Coordenadas polares'

'Coordenadas polares'

Hasta aquí hemos visto que las funciones del tipo r = sen(aq) son rosas o rosetas. El número de pétalos depende del valor de a, si a es par, el número de pétalos es 2a; y si a es impar el número de pétalos es a.

Para graficar estas funciones en el cuaderno o en el pizarrón se puede hacer una tabulación sólo con algunos valores de q que casi siempre son: 0, p/2, p, 3p/2, 2p. y ver cómo cambia el valor de r.

r = 1- sen(q)

'Coordenadas polares'

Aquí observamos que el radio siempre es positivo y va de 1 a 2.

'Coordenadas polares'

Vídeos relacionados