Física


Volumen del cilindro


Datos y Resultados

'Volumen del cilindro'

Gravedad 'Volumen del cilindro'

Masa 'Volumen del cilindro'

Diámetro Grande (D) 'Volumen del cilindro'

Diámetro Chico (d) 'Volumen del cilindro'

Altura Grande (H) 'Volumen del cilindro'

El volumen del cilindro grande es constante y se obtiene de la siguiente manera, 'Volumen del cilindro'
donde h es la altura que se desplaza el otro cilindro, como en este caso queremos sacar el puro volumen del cilindro grande 'Volumen del cilindro'
y obtenemos la siguiente formula: 'Volumen del cilindro'
.

El peso del pistón completo se

obtiene a partir de la formula:

'Volumen del cilindro'

Las siguientes mediciones fueron variables, estas son:

  • La altura del cilindro chico, que a su vez define el volumen del cilindro chico.

  • La tensión marcada por el sensor de fuerza.

El volumen del cilindro chico se obtiene de la siguiente manera:

'Volumen del cilindro'

Donde d es el diámetro medido y será utilizado como constante, por lo que la única variable es h que es la altura que este cilindro tendrá en cada muestra.

Medición

Vol. Chico (m3) +/- .000006 m

Altura h (m) +/- .00025 m

Tensión (N)

Desviación Tensión (N)

Fr. Flotación (N) +/- .4 N

1

0

0

1.492

0.02

0.2573

2

2.49005E-06

0.0127

1.464

0.019

0.2853

3

3.03904E-06

0.0155

1.458

0.02

0.2913

4

3.72527E-06

0.019

1.449

0.019

0.3003

5

5.882E-06

0.03

1.425

0.018

0.3243

6

6.60745E-06

0.0337

1.418

0.02

0.3313

La grafica en la que se relaciona a la fuerza resultante con el volumen desplazado queda de la siguiente manera:

La ecuación de esta grafica es 'Volumen del cilindro'

El valor obtenido de 'Volumen del cilindro'
.

La incertidumbre de m y b se pueden calcular con las siguientes ecuaciones:

'Volumen del cilindro'
'Volumen del cilindro'

Donde Sy se obtiene con 'Volumen del cilindro'
donde d se obtiene con 'Volumen del cilindro'

'Volumen del cilindro'

Por lo que tenemos que 'Volumen del cilindro'
es:

'Volumen del cilindro'

También tenemos que b es:

'Volumen del cilindro'

Análisis de Resultados

Primero tenemos que hacer nuestro diagrame de cuerpo libre para poder entender lo que esta sucediendo. De este diagrama tenemos la siguiente ecuación:

'Volumen del cilindro'

Por lo que tenemos la siguiente comparación 'Volumen del cilindro'
'Volumen del cilindro'
y la ecuación nos queda 'Volumen del cilindro'
donde si despejamos y nos queda 'Volumen del cilindro'
. De allí viene la relación lineal que este fenómeno tiene, la ecuación final con todo y unidades quedaría así:

'Volumen del cilindro'

En la ecuación de la grafica tenemos que la pendiente es -11289, este número es la multiplicación de la densidad de la glicerina con el valor de la gravedad 'Volumen del cilindro'
, por lo que si lo dividimos obtenemos el valor de la densidad de la glicerina:

'Volumen del cilindro'

Si el valor teórico de la densidad es de 'Volumen del cilindro'
y el que obtuvimos es 'Volumen del cilindro'
tenemos entonces que el porcentaje de error es de:

'Volumen del cilindro'

También tenemos que el valor teórico de b=1.7493, el valor que obtuvimos en la grafica fue b=1.7344 entonces tenemos que nuestro porcentaje de error fue:

'Volumen del cilindro'

La pendiente de la grafica fue negativa, esto es totalmente lógico ya que si tenemos que el volumen desplazado es 0m3 tenemos que la tensión es igual al peso y si el volumen empieza a aumentar, la tensión del sensor comienza a disminuir, esto causado por la fuerza de flotación. Si la pendiente no fuese negativa, al aumentar el volumen teóricamente aumentaría la tensión lo cual no es lógico ya que la fuerza de flotación tiene una relación directa con la densidad del líquido y con el volumen que el objeto desplaza.




Descargar
Enviado por:El remitente no desea revelar su nombre
Idioma: castellano
País: México

Te va a interesar