Matemáticas


Métodos Generales de Integración


CENTRO DE BACHILLERATO TECNOLOGICO industrial y de servicios N° 248

MATEMATICAS APLICADA

PROYECTO:

METODOS DE INTEGRACION

6° SEMESTRE GRUPO “G”

TURISMO

METODOS GENERALES DE INTEGRACION

Se entiende por métodos de integracióncualquiera de las diferentes técnicas elementales usadas para calcular una anti derivada o integral indefinida de una función.

Así, dada una función f(x), los métodos de integración son técnicas cuyo uso (usualmente combinado) permite encontrar una función F(x) tal que

,

lo cual, por el teorema fundamental del cálculo equivale a hallar una función F(x) tal que f(x) es su derivada:[1]

INTEGRACIÓN DIRECTA

En ocasiones es posible aplicar la relación dada por el teorema fundamental del cálculo de forma directa. Esto es, si se conoce de antemano una función cuya derivada sea igual a f(x) (ya sea por disponer de una tabla de integrales o por haberse calculado previamente), entonces tal función es el resultado de la anti derivada.

Ejemplo

Calcular la integral .

En una tabla de derivadas se puede comprobar que la derivada de tan(x)es sec2(x). Por tanto:

Ejemplo

Calcular la integral .

Una fórmula estándar sobre derivadas establece que . De este modo, la solución del problema es .

No obstante, puesto que la función esta definida en los números negativos también ha de estarlo su integral, así que, la integral escrita de una forma rigurosa sería ln(|x|)

Método de integración por sustitución

EL MÉTODO DE INTEGRACIÓN POR SUSTITUCIÓNO POR CAMBIO DE VARIABLEse basa en realizar un reemplazo de variables adecuado que permita convertir el integrando en algo sencillo con una integral o anti derivada simple. En muchos casos, donde las integrales no son triviales, se puede llevar a una integral de tabla para encontrar fácilmente su primitiva. Este método realiza lo opuesto a la regla de la cadena en la derivación.

Procedimiento práctico

Supongamos que la integral a resolver es:

En la integral reemplazamos con (u):

(1)

Ahora necesitamos sustituir también para que la integral quede sólo en función de :

Tenemos que por tanto derivando se obtiene

Se despeja y se agrega donde corresponde en (1):

Simplificando:

Debemos considerar si la sustitución fue útil y por tanto se llegó a una forma mejor, o por el contrario empeoró las cosas. Luego de adquirir práctica en esta operación, se puede realizar mentalmente. En este caso quedó de una manera más sencilla dado que la primitiva del coseno es el seno.

Como último paso antes de aplicar la regla de Barrow con la primitiva debemos modificar los límites de integración. Sustituimos x por el límite de integración y obtenemos uno nuevo.

En este caso, como se hizo  :

(límite inferior)

(límite superior)

Luego de realizar esta operación con ambos límites la integral queda de una forma final:

MÉTODO DE INTEGRACIÓN POR PARTES

El método de integración por partes es el que resulta de aplicar el siguiente teorema:

Eligiendo adecuadamente los valores de y , puede simplificarse mucho la resolución de la integral. .

.

INTEGRALES TRIGONOMETRICAS

Integral que contiene potencias de senos y cosenos

En general, se intenta escribir un integrando en el que intervienen potencias de seno y coseno en una forma donde se tiene sólo un factor seno (y el resto de la expresión en términos de coseno) o sólo un factor coseno (y el resto de la expresión en términos de seno).

La identidad sen2x+cos2x=1permite convertir de una parte a otra entre potencias pares de seno y coseno.

Tendremos 3 casos

cuando n es impar

Cuando n= 2k+ 1, podemos apartar un factor del seno y sustituirlo por la identidad sen2x= 1 − cos2xpara poder expresar los factores restantes en términos del coseno:

Al tener el integral de esta forma se puede resolver por medio de sustitución haciendo u= cos(x), du= − sen(x)dx. Como en la expresión no tenemos un − sen(x)dxmultiplicamos ambos lados por * ( − 1) y nos queda la expresión − du= sen(x)dxque ya podemos sustituir:

Cuando m es impar

Cuando m= 2k+ 1, podemos de la misma manera apartar un factor de coseno y emplear cos2x= 1 − sen2xpara poder expresar los factores restantes en términos del senx:

al hacer u= senxy du= cosxdxtendríamos

Cuando m y n son pares

Cuando dichas potencias son pares a la vez n= 2ky m= 2p, podemos aplicar las identidades de la mitad de ángulo -y- algunas veces nos sera útil utilizar la identidad

seria igual a:

Ejemplo #1

Determine

SoluciónLo primero que tenemos que ver es que la potencia impar la tiene la función seno, esto nos hace notar que estamos en el primer caso que describimos arriba, entonces aplicamos el algoritmo,


Sustituyendo , tenemos luego

Integrales que contiene potencias de tangentes y secantes

Se puede usar una estrategia similar a la anterior.

Puesto que:

, se puede separar un factor sec2xy convertir la potencia restante (par) de la secante en una expresión relacionada con la tangente por medio de la identidad sec2x= 1 + tan2x.

O bien, puesto que:

, se puede separar un factor secxtanxy convertir la potencia restante (par) de tangente a secante.

Tendremos 5 casos

1. Cuando n es par

n= 2kseparar un factor de sec2xy utilice sec2x= 1 + tan2xpara lograr expresar los factores restantes en términos de tanx:

de esta manera podemos hacer u= tanxy du= sec2xdxy el integral quedaría así:

2. Cuando m es impar

m= 2k+ 1 apartar un factor de secxtanxy emplear tan2x= sec2x− 1 para poder expresar los factores que restan en términos de secx:

de esta manera podemos hacer u= secxy du= secx* tanxdxy nos queda

3. La tangente tiene potencia par

4. La Secante tiene potencia impar

Al encontrarnos con este caso debemos integrar por partes .

5. cuando no cabe en 1, 2, 3, 4

Al no encontrar la forma de ninguno de los pasos anteriores deberemos trasladarlo a senxy cosxrecordando que:

y

Para otros casos, las directrices no son tan claras. Podría ser necesario usar identidades, integración por partes y, ocasionalmente, un poco de inventiva.

A veces será necesario poder integrar tanxpor medio de la fórmula establecida:

Se necesitará también la integral indefinida de la secante:

Esta última se podría comprobar mediante la derivación de lado derecho, o como sigue:

Primero se multiplican numerador y denominador por secx+ tanx :

Si se sustituye u= secx+ tanx, después du= (secxtanx+ sec2x)dx, también, la integral se convierte en:

Así, se tiene:

Para integrales que contienen cosecantes y cotangentes, la estrategia es análoga a la del par secantes-tangentes. Recordar la identidad: csc2x= 1 + cot2x

Notas

Para cada función f(x) existe una infinidad de funciones que tienen a f(x) por derivada, y por tanto hay una infinidad de soluciones a la integral ∫f(x) dx. Todas estas soluciones difieren por una constante. Por ejemplo: x²+5, x²-20, x²+ 13.41 son tres soluciones para ∫ 2x dx-.
De este modo, si F(x) es unaanti derivada de f(x), cualquier función de la forma F(x)+Ctambién lo es. Esto se representa como ∫ f(x)dx= F(x)+Cpero por simplicidad de la presentación se omite la constante arbitraria Cen cada uno de los ejemplos.




Descargar
Enviado por:El remitente no desea revelar su nombre
Idioma: castellano
País: México

Te va a interesar