Tecnología


Las Turbinas


ÍNDICE

  • Funcionamiento y explicación página 2

  • Avances en el diseño de las turbinas página 10

  • Diferencias entre ellas página 11

  • Conclusiones página 12

  • Central geotérmica página 13

  • Central térmica página 14

  • Central hidráulica página 16

  • FUNCIONAMIENTO I EXPLICACIÓN

    Turbina,

    Motor rotativo que convierte en energía mecánica la energía de una corriente de agua, vapor de agua o gas. El elemento básico de la turbina es la rueda o rotor, que cuenta con palas, hélices, cuchillas o cubos colocados alrededor de su circunferencia, de tal forma que el fluido en movimiento produce una fuerza tangencial que impulsa la rueda y la hace girar. Esta energía mecánica se transfiere a través de un eje para proporcionar el movimiento de una máquina, un compresor, un generador eléctrico o una hélice. Las turbinas se clasifican en turbinas hidráulicas o de agua, turbinas de vapor y turbinas de combustión. Hoy la mayor parte de la energía eléctrica mundial se produce utilizando generadores movidos por turbinas. Los molinos de viento que producen energía eléctrica se llaman turbinas de viento.

    Turbinas hidráulicas

    El tipo más antiguo y más simple de turbina hidráulica es la rueda hidráulica, utilizada por primera vez en Grecia y utilizada durante la antigüedad y la edad media para moler cereales. Consistía en un eje vertical con un conjunto de aspas o palas radiales situadas en una corriente de agua a gran velocidad. La potencia de la rueda era de unos 0,5 caballos de vapor (CV). La rueda hidráulica horizontal (o sea, un eje horizontal conectado a una rueda de palas vertical), descrita por primera vez por el arquitecto e ingeniero romano Vitrubio en el siglo I a.C., tenía el segmento inferior de la rueda de palas insertada en la corriente, y actuaba como una rueda hidráulica de empuje inferior.

    Hacia el siglo II d.C. se empezó a utilizar en las regiones montañosas la rueda hidráulica de empuje superior. En este caso, el agua se vertía sobre las palas desde arriba, y se obtenía energía adicional de la inercia del agua en su caída. En la edad media la potencia máxima de la rueda, fabricada con madera, aumentó de 3 a 50 CV.

    La transición de la rueda hidráulica a la turbina es sobre todo semántica. El primer intento de formular la base teórica para el diseño de ruedas hidráulicas en el siglo XVIII corresponde al ingeniero civil británico John Smeaton, que demostró que la rueda de empuje superior era más eficaz. Sin embargo, el ingeniero militar francés Jean Victor Poncelet diseñó una rueda de empuje inferior cuyas palas curvadas aumentaban el rendimiento casi un 70%. El uso de esta máquina se extendió rápidamente. Otro ingeniero militar francés, Claude Burdin, inventó el término turbina, como parte de un análisis teórico en que se daba una gran importancia a la velocidad de rotación. Benoit Fourneyron, un alumno de Burdin en la Escuela de Minería de Saint Étienne, diseñó y construyó ruedas que alcanzaban velocidades de rotación de 60 rpm (revoluciones por minuto) o más y que proporcionaban hasta 50 CV en las factorías metalúrgicas francesas. Por último, Fourneyron construyó turbinas que trabajaban a 2.300 rpm, desarrollando 60 CV y un rendimiento de más del 80%.

    A pesar de esta eficiencia excepcional, la turbina de Fourneyron tenía algunos inconvenientes causados por el flujo centrífugo del agua que la atravesaba. Esto provocaba problemas si se reducía el flujo de agua o su carga. El ingeniero estadounidense nacido en Gran Bretaña James B. Francis diseñó una turbina en la que el flujo se producía hacia el interior. La llamada turbina de reacción o turbina Francis se convirtió en la turbina hidráulica más utilizada con presiones de agua, o alturas de caída, equivalentes a una columna de agua de 10 a 100 m. Este tipo de turbina funciona debido a la expansión del agua mientras fluye a través de los espacios entre las palas, lo que produce una fuerza neta, o reacción, con un componente tangencial que pone la rueda en movimiento.

    La rueda Pelton, cuyo nombre proviene del ingeniero estadounidense Lester Allen Pelton, se empezó a aplicar durante la segunda mitad del siglo XIX, en instalaciones donde la presión del agua era equivalente a una columna de agua de entre 90 y 900 m. En este tipo de turbinas el agua se conduce desde un depósito a gran altura a través de un canal o una conducción forzada hasta una boquilla eyectora que convierte la energía cinética del agua en un chorro a presión. Dado que la acción de la rueda Pelton depende del impulso del chorro sobre ella, en lugar de la reacción del agua en expansión, este tipo de turbina se denomina también turbina de acción.

    El aumento de las necesidades de energía hidroeléctrica durante los albores del siglo XX puso de manifiesto la necesidad de turbinas que pudieran aprovechar caídas de agua de 3 a 9 m, que podrían utilizarse en muchos ríos construyendo pequeños embalses de agua. En 1913, el ingeniero austriaco Viktor Kaplan planteó por primera vez la turbina de hélice, que actúa al contrario que la hélice de un barco. Kaplan mejoró la turbina haciendo que las palas pudieran pivotar sobre su eje. Los distintos ángulos de las palas aumentaban el rendimiento ajustando el ángulo al volumen de la caída de agua.

    Para mantener una salida constante de voltaje en una instalación hidroeléctrica la velocidad de la turbina debe mantenerse constante, independientemente de las variaciones de la presión del agua que las mueve. Esto requiere gran número de controles que, tanto en la turbina de Francis como en la de Kaplan, varían el ángulo de las palas. En las instalaciones de ruedas Pelton, el flujo del agua se controla abriendo y cerrando las boquillas eyectoras. En este caso, se utiliza una boquilla de derivación de descarga, dado que los cambios rápidos de corriente en canales de caída largos podrían producir aumentos repentinos en la presión, llamados martillos de agua, que pueden ser muy dañinos. Con estos ajustes, se mantiene constante el flujo de agua a través de las boquillas. Para ello se cierran las boquillas de descarga, lo que se hace con mucha lentitud para evitar martillos de agua.

    Turbinas de vapor

    El éxito obtenido con las turbinas de agua condujo a utilizar el principio de la turbina para extraer energía del vapor de agua. Mientras que la máquina de vapor de vaivén desarrollada por Watt utilizaba la presión del vapor, la turbina consigue mejores rendimientos al utilizar también la energía cinética de éste. La turbina puede ser más pequeña, más ligera y más barata que una máquina de vapor de vaivén de la misma potencia, y puede ser de un tamaño mucho mayor que las máquinas de vapor convencionales. Desde el punto de vista de la mecánica, tiene la ventaja de producir directamente un movimiento giratorio sin necesidad de una manivela o algún otro medio de convertir la energía de vaivén en energía rotatoria. Como resultado de ello, la turbina de vapor ha reemplazado a las máquinas de vaivén en las centrales generadoras de energía eléctrica, y también se utiliza como una forma de propulsión a chorro.

    Las turbinas de vapor se utilizan en la generación de energía eléctrica de origen nuclear y en la propulsión de los buques con plantas nucleares. En las aplicaciones de cogeneración que requieran tanto calor (el utilizado en un proceso industrial) como electricidad, se genera vapor a altas presiones en una caldera y se extrae desde la turbina a la temperatura y la presión que necesita el proceso industrial. Las turbinas de vapor pueden utilizarse en ciclos (escalones) combinados con un generador de vapor que recupera el calor que se perdería. Las unidades industriales se utilizan para poner en movimiento máquinas, bombas, compresores y generadores eléctricos. La potencia que se obtiene puede ser de hasta 1.300 MW.

    La turbina de vapor no fue inventada por una única persona, sino que fue el resultado del trabajo de un grupo de inventores a finales del siglo XIX. Algunos de los participantes más notables en este desarrollo fueron el británico Charles Algernon Parsons y el sueco Carl Gustaf Patrik de Laval. Parsons fue responsable del denominado principio de escalones, mediante el cual el vapor se expandía en varias fases, aprovechándose su energía en cada una de ellas. De Laval fue el primero en diseñar chorros y palas adecuados para el uso eficiente de la expansión del vapor.

    Funcionamiento de la turbina de vapor

    El funcionamiento de la turbina de vapor se basa en el principio termodinámico que expresa que cuando el vapor se expande disminuye su temperatura y se reduce su energía interna. Esta reducción de la energía interna se transforma en energía mecánica por la aceleración de las partículas de vapor, lo que permite disponer directamente de una gran cantidad de energía. Cuando el vapor se expande, la reducción de su energía interna en 400 cal puede producir un aumento de la velocidad de las partículas a unos 2.900 km/h. A estas velocidades la energía disponible es muy elevada, a pesar de que las partículas son extremadamente ligeras.

    Si bien están diseñadas de dos formas diferentes, las partes fundamentales de las turbinas de vapor son parecidas. Consisten en boquillas o chorros a través de los que pasa el vapor en expansión, descendiendo la temperatura y ganando energía cinética, y palas sobre las que actúa la presión de las partículas de vapor a alta velocidad. La disposición de los chorros y las palas depende del tipo de turbina. Además de estos dos componentes básicos, las turbinas cuentan con ruedas o tambores sobre los que están montadas las palas, un eje para las ruedas o los tambores, una carcasa exterior que retiene el vapor dentro de la zona de la turbina, y varios componentes adicionales como dispositivos de lubricación y controladores.

    Tipos de turbina de vapor

    La forma más sencilla de turbina de vapor es la denominada turbina de acción, en la que los chorros de la turbina están sujetos a un punto dentro de la carcasa de la turbina, y las palas están dispuestas en los bordes de ruedas que giran alrededor de un eje central. El vapor pasa a través de las boquillas y alcanza las palas. Éstas absorben una parte de la energía cinética del vapor en expansión, lo que hace girar la rueda y con ella el eje al que está unida. La turbina está diseñada de forma que el vapor que entra por un extremo de la misma se expande a través de una serie de boquillas hasta que ha perdido la mayor parte de su energía interna.

    En la turbina de reacción la energía mecánica se obtiene de la aceleración del vapor en expansión. Las turbinas de este tipo cuentan con dos grupos de palas, unas móviles y las otras fijas. Las palas están colocadas de forma que cada par actúa como una boquilla a través de la cual pasa el vapor mientras se expande. Las palas de las turbinas de reacción suelen montarse en un tambor en lugar de una rueda. El tambor actúa como eje de la turbina.

    Para que la energía del vapor se utilice eficientemente en ambos tipos de turbina, es necesario utilizar varios escalones en cada uno de los cuales se convierte en energía cinética una parte de la energía térmica del vapor. Si se hiciera toda la conversión de los dos tipos de energía en un solo escalón, la velocidad rotatoria de la rueda sería excesiva. Por lo general, se utilizan más escalones en las turbinas de reacción que en las turbinas de acción.

    Se puede comprobar que, con el mismo diámetro y la misma cantidad de energía, la turbina de reacción necesita el doble de escalones para obtener un rendimiento máximo. Las turbinas más grandes, que normalmente son de acción, emplean hasta cierto grado la reacción al principio del recorrido del vapor para que el flujo de vapor sea eficaz. Muchas de las turbinas de reacción utilizan primero un escalón de control de acción, lo que reduce el número de escalones necesarios.

    A causa del aumento de volumen del vapor cuando se expande, es necesario aumentar en cada escalón el tamaño de las aberturas a través de las cuales pasa el vapor. Durante el diseño real de las turbinas, este aumento se consigue alargando las palas de un escalón a otro y aumentando el diámetro del tambor o la rueda a la que están acopladas las palas. También se agregan dos o más secciones de turbina en paralelo. Como resultado de esto, una turbina industrial pequeña puede ser prácticamente cónica, con el diámetro más pequeño en el extremo de entrada, de mayor presión, y el diámetro mayor en el extremo de salida. Las grandes turbinas de una central eléctrica nuclear pueden tener cuatro rotores con una sección de alta presión con flujo doble, seguida de tres secciones de baja presión y flujo doble.

    Las turbinas de vapor son máquinas simples que tienen prácticamente una sola parte móvil, el rotor. Sin embargo, requieren algunos componentes auxiliares para funcionar: cojinetes de contacto plano para sostener el eje, cojinetes de empuje para mantener la posición axial del eje, un sistema de lubricación de los cojinetes y un sistema de estanqueidad que impide que el vapor salga de la turbina y que el aire entre en ella. La velocidad de rotación se controla con válvulas en la admisión de vapor de la máquina. La caída de presión en las palas produce además una fuerza axial considerable en las palas móviles, lo que se suele compensar con un pistón de equilibrado, que crea a su vez un empuje en sentido opuesto al del vapor.

    La eficiencia de expansión de las turbinas modernas de varios escalones es alta, dado el avanzado estado de desarrollo de los componentes utilizados en las turbinas y la posibilidad de recuperar las pérdidas de un escalón en los siguientes, con un sistema de recalentamiento. El rendimiento que se obtiene al transformar en movimiento la energía teóricamente disponible suele superar el 90%. La eficiencia termodinámica de una instalación de generación con vapor es mucho menor, dada la pérdida de energía del vapor que sale de la turbina.

    Avances en el diseño de las turbinas

    La tendencia en las turbinas hidráulicas modernas es utilizar caídas mayores y máquinas más grandes. Según el tamaño de la unidad, las turbinas Kaplan se utilizan en caídas de unos 60 m, y en el caso de las turbinas Francis de hasta 610 m. La instalación de caída más alta del mundo (1.770 m) se encuentra en Reisseck, en Austria, y las turbinas más grandes del mundo están en una planta generadora de la presa de Itaipú, entre Paraguay y Brasil, donde se utilizan 18 turbinas de tipo Francis de 700 MW de potencia cada una, que consiguen un total de 12.600 MW.

    Muchas de las pequeñas instalaciones en presas construidas antes de 1930 han sido abandonadas debido a su alto coste de mantenimiento y la mano de obra que requieren. Sin embargo, el aumento de los costos de los combustibles fósiles ha hecho volver la mirada hacia este tipo de sistemas de poca caída. Con el desarrollo de turbinas de hélice normalizadas con ejes casi horizontales, las instalaciones pequeñas han recuperado su atractivo original.

    Se han diseñado turbinas que actúan como bombas cuando funcionan a la inversa, invirtiendo el generador eléctrico para que funcione como un motor. Dado que no es posible almacenar la energía eléctrica de forma económica, este tipo de bombas turbina se utiliza para bombear agua hacia los embalses, aprovechando la energía eléctrica generada por las centrales nucleares y térmicas durante las horas de poco consumo. El agua embalsada se emplea de nuevo para generar energía eléctrica durante las horas de consumo elevado. En los últimos años se han desarrollado turbinas para caídas de hasta 600 m y con capacidades de más de 400 MW.

    DIFERENCIAS

    Aunque básicamente su funcionamiento es muy similar, las turbinas Pelton, Francis y Kaplan se diferencian en muchos aspectos.

    Uno de ellos es su simple apariencia. La turbina Pelton está formada por una especie de cucharas que, sometidas al impacto del agua, giran produciendo el giro continuo del eje. Mientras que la forma de la turbina Francis recuerda un molinillo de viento en forma de caracol. Por otro lado la turbina Kaplan recuerda más a una hélice de un barco o un submarino.

    Otra de las diferencias es según la forma en que el agua impacta en sus álabes y hace que se muevan. Por lo tanto la turbina Pelton y la Francis son turbinas nombradas de acción, porque se mueven por el impacto del agua sobre sus aspas, mientras que la turbina Francis es de reacción porque sus aspas giran por la presión del agua que circula a su alrededor.

    También las diferencia la cantidad de agua con la que pueden trabajar: la Pelton se utiliza para poca cantidad de agua, pero por contra la Kaplan necesita mucha agua, por lo tanto la más adaptable es la Francis que se puede utilizar para cantidad variable de agua y salto de agua.

    Otro de los aspectos que las diferencian son las aplicaciones que se hacen de cada una. Mientras que la Pelton en centrales hidráulicas de no mucha potencia, la Francis al poderse aplicar a todo tipo de cantidad de agua y salto de agua es la más utilizada en centrales hidroeléctricas

    ( estas pueden ser reversibles ) y la turbina Kaplan con su eje en posición horizontal se utiliza en las mareomotrices.

    CONCUSIONES

    La aplicación de las turbinas es muy frecuente para obtener energía eléctrica ya sea por cualquier método posible. Un claro ejemplo es que las turbinas se pueden utilizar de muchas maneras como, por ejemplo, en una central térmica , una hidroeléctrica o una geotérmica ( ver páginas siguientes ).

    Las turbinas han evolucionado mucho desde que surgieron como unas simples ruedas, después empezaron a conectarse a otros aparatos para utilizarse con máquinas como las de un molino de papel (un claro ejemplo de molino de papel es el de Capellades ) pero aquí no se detuvo su evolución y siguió evolucionando hasta las centrales (normalmente eléctricas ) de hoy en día. Un ejemplo de una de las centrales hidroeléctricas más modernas de España es la central reversible de Capdella en el Pallars Jussà. En esta central utilizan el agua del Estany Gento para mover las turbinas y producir, mediante alternadores, energía eléctrica . Pero por la noche se hace el proceso contrario, debajo del lago han hecho un embalse donde almacenan el agua que, por la noche bombean otra vez hacia arriba con una pequeña parte de la energía producida.

    Mediante las turbinas hemos podido aprovechar diversas energías que no podrían haber sido aprovechadas de otra manera. Con éstas hemos podido sacar provecho de muchos tipos distintos de energías como la nuclear o la térmica.

    Central geotérmica

    El vapor producido por líquidos calientes naturales en sistemas geotérmicos es una alternativa al que se obtiene en plantas de energía por quemado de materia fósil, por fisión nuclear o por otros medios. Las perforaciones modernas en los sistemas geotérmicos alcanzan reservas de agua y de vapor, calentados por magma mucho más profundo, que se encuentran hasta los 3.000 m bajo el nivel del mar. El vapor se purifica en la boca del pozo antes de ser transportado en tubos grandes y aislados hasta las turbinas. La energía térmica puede obtenerse también a partir de géiseres y de grietas.

    La energía geotérmica se desarrolló para su aprovechamiento como energía eléctrica en 1904, en Toscana (Italia), donde la producción continúa en la actualidad. Los fluidos geotérmicos se usan también como calefacción en Budapest (Hungría), en algunas zonas de París, en la ciudad de Reykjavík, en otras ciudades islandesas y en varias zonas de Estados Unidos.

    En la actualidad, se está probando una técnica nueva consistente en perforar rocas secas y calientes situadas bajo sistemas volcánicos en reposo para luego introducir agua superficial que regresa como vapor muy enfriado. La energía geotérmica tiene un gran potencial: se calcula, basándose en todos los sistemas hidrotérmicos conocidos con temperaturas superiores a los 150 °C, que Estados Unidos podría producir 23.000 MW en 30 años. En otros 18 países, la capacidad geotérmica total fue de 5.800 MW en 1990.

    Central geotérmica

    El vapor producido por líquidos calientes naturales en sistemas geotérmicos es una alternativa al que se obtiene en plantas de energía por quemado de materia fósil, por fisión nuclear o por otros medios. Las perforaciones modernas en los sistemas geotérmicos alcanzan reservas de agua y de vapor, calentados por magma mucho más profundo, que se encuentran hasta los 3.000 m bajo el nivel del mar. El vapor se purifica en la boca del pozo antes de ser transportado en tubos grandes y aislados hasta las turbinas. La energía térmica puede obtenerse también a partir de géiseres y de grietas.

    La energía geotérmica se desarrolló para su aprovechamiento como energía eléctrica en 1904, en Toscana (Italia), donde la producción continúa en la actualidad. Los fluidos geotérmicos se usan también como calefacción en Budapest (Hungría), en algunas zonas de París, en la ciudad de Reykjavík, en otras ciudades islandesas y en varias zonas de Estados Unidos.

    En la actualidad, se está probando una técnica nueva consistente en perforar rocas secas y calientes situadas bajo sistemas volcánicos en reposo para luego introducir agua superficial que regresa como vapor muy enfriado. La energía geotérmica tiene un gran potencial: se calcula, basándose en todos los sistemas hidrotérmicos conocidos con temperaturas superiores a los 150 °C, que Estados Unidos podría producir 23.000 MW en 30 años. En otros 18 países, la capacidad geotérmica total fue de 5.800 MW en 1990.

    CENTRAL HIDROELECTRICA

    Energía hidráulica,

    energía que se obtiene de la caída del agua desde cierta altura a un nivel inferior lo que provoca el movimiento de ruedas hidráulicas o turbinas. La hidroelectricidad es un recurso natural disponible en las zonas que presentan suficiente cantidad de agua. Su desarrollo requiere construir pantanos, presas, canales de derivación, y la instalación de grandes turbinas y equipamiento para generar electricidad. Todo ello implica la inversión de grandes sumas de dinero, por lo que no resulta competitiva en regiones donde el carbón o el petróleo son baratos, aunque el coste de mantenimiento de una central térmica, debido al combustible, sea más caro que el de una central hidroeléctrica. Sin embargo, el peso de las consideraciones medioambientales centra la atención en estas fuentes de energía renovables.

    Historia

    Los antiguos romanos y griegos aprovechaban ya la energía del agua; utilizaban ruedas hidráulicas para moler trigo. Sin embargo, la posibilidad de emplear esclavos y animales de carga retrasó su aplicación generalizada hasta el siglo XII. Durante la edad media, las grandes ruedas hidráulicas de madera desarrollaban una potencia máxima de cincuenta caballos. La energía hidroeléctrica debe su mayor desarrollo al ingeniero civil británico John Smeaton, que construyó por vez primera grandes ruedas hidráulicas de hierro colado.

    La hidroelectricidad tuvo mucha importancia durante la Revolución Industrial. Impulsó las industrias textil y del cuero y los talleres de construcción de máquinas a principios del siglo XIX. Aunque las máquinas de vapor ya estaban perfeccionadas, el carbón era escaso y la madera poco satisfactoria como combustible. La energía hidráulica ayudó al crecimiento de las nuevas ciudades industriales que se crearon en Europa y América hasta la construcción de canales a mediados del siglo XIX, que proporcionaron carbón a bajo precio.

    Las presas y los canales eran necesarios para la instalación de ruedas hidráulicas sucesivas cuando el desnivel era mayor de cinco metros. La construcción de grandes presas de contención todavía no era posible; el bajo caudal de agua durante el verano y el otoño, unido a las heladas en invierno, obligaron a sustituir las ruedas hidráulicas por máquinas de vapor en cuanto se pudo disponer de carbón.

    Desarrollo de la energía hidroeléctrica

    La primera central hidroeléctrica se construyó en 1880 en Northumberland, Gran Bretaña. El renacimiento de la energía hidráulica se produjo por el desarrollo del generador eléctrico, seguido del perfeccionamiento de la turbina hidráulica y debido al aumento de la demanda de electricidad a principios del siglo XX. En 1920 las centrales hidroeléctricas generaban ya una parte importante de la producción total de electricidad.

    La tecnología de las principales instalaciones se ha mantenido igual durante el siglo XX. Las centrales dependen de un gran embalse de agua contenido por una presa. El caudal de agua se controla y se puede mantener casi constante. El agua se transporta por unos conductos o tuberías forzadas, controlados con válvulas y turbinas para adecuar el flujo de agua con respecto a la demanda de electricidad. El agua que entra en la turbina sale por los canales de descarga. Los generadores están situados justo encima de las turbinas y conectados con árboles verticales. El diseño de las turbinas depende del caudal de agua; las turbinas Francis se utilizan para caudales grandes y saltos medios y bajos, y las turbinas Pelton para grandes saltos y pequeños caudales.

    del embalse de grandes cantidades de agua, existen algunas centrales que se basan en la caída natural del agua, cuando el caudal es uniforme. Estas instalaciones se llaman de agua fluente. Una de ellas es la de las cataratas del Niágara, situada en la frontera entre Estados Unidos y Canadá.

    A principios de la década de los noventa, las primeras potencias productoras de hidroelectricidad eran Canadá y Estados Unidos. Canadá obtiene un 60% de su electricidad de centrales hidráulicas. En todo el mundo, la hidroelectricidad representa aproximadamente la cuarta parte de la producción total de electricidad, y su importancia sigue en aumento. Los países en los que constituye fuente de electricidad más importante son Noruega (99%), República Democrática del Congo (97%) y Brasil (96%). La central de Itaipú, en el río Paraná, está situada entre Brasil y Paraguay; se inauguró en 1982 y tiene la mayor capacidad generadora del mundo. Como referencia, la presa Grand Coulee, en Estados Unidos, genera unos 6.500 MW y es una de las más grandes.

    En algunos países se han instalado centrales pequeñas, con capacidad para generar entre un kilovatio y un megavatio. En muchas regiones de China, por ejemplo, estas pequeñas presas son la principal fuente de electricidad. Otras naciones en vías de desarrollo están utilizando este sistema con buenos resultados.




    Descargar
    Enviado por:Olga Espurz
    Idioma: castellano
    País: España

    Te va a interesar