$(function(){
$("#headerSearchForm").on("submit", function(event)
{
event.preventDefault();
var query = $.trim($("#headerSearchQ").val());if (query.length == 0) {return false;}
location.href = "https://buscador.rincondelvago.com/" + query.replace(/[^ a-záâàäéêèëíîìïóôòöúûùüçñA-ZÁÂÀÄÉÊÈËÍÎÌÏÓÔÒÖÚÛÙÜÇÑ0-9'"]/g,"").replace(/ /g,"+");
});
$("#bodySearchForm").on("submit", function(event)
{
event.preventDefault();
var query = $.trim($("#bodySearchQ").val());if (query.length == 0) {return false;}
location.href = "https://buscador.rincondelvago.com/" + query.replace(/[^ a-záâàäéêèëíîìïóôòöúûùüçñA-ZÁÂÀÄÉÊÈËÍÎÌÏÓÔÒÖÚÛÙÜÇÑ0-9'"]/g,"").replace(/ /g,"+");
});
});
var div_1_sizes = [
[320, 100],
[320, 50],
[300, 250],
[300, 600]
];
var div_2_sizes = [[970, 90], [728, 90],[970, 250]];
var PREBID_TIMEOUT = 2000;
var adUnits = [{
code: 'div-gpt-ad-1498674722723-0',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485609'
}
}]
},{
code: 'div-gpt-ad-1515779430602-1',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485931'
}
}]
},{
code: 'div-gpt-ad-1515779430602-2',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485934'
}
}]
},{
code: 'div-gpt-ad-1515779430602--3',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485937'
}
}]
},{
code: 'div-gpt-ad-1515779430602--4',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485941'
}
}]
},{
code: 'div-gpt-ad-1515779430602--5',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485945'
}
}]
},{
code: 'div-gpt-ad-1515779430602--6',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485949'
}
}]
},{
code: 'div-gpt-ad-1515779430602--7',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485953'
}
}]
},{
code: 'div-gpt-ad-1515779430602--8',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485956'
}
}]
},{
code: 'div-gpt-ad-1515779430602--9',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485957'
}
}]
},{
code: 'div-gpt-ad-1515779430602--10',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485958'
}
}]
},{
code: 'div-gpt-ad-1515779430602--11',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485959'
}
}]
},{
code: 'div-gpt-ad-1515779430602--12',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485960'
}
}]
},{
code: 'div-gpt-ad-1515779430602--13',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485961'
}
}]
},{
code: 'div-gpt-ad-1515779430602--14',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--15',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--16',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--17',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--18',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--19',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--20',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--21',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--22',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--23',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--24',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
}];
var googletag = googletag || {};
googletag.cmd = googletag.cmd || [];
googletag.cmd.push(function() {
googletag.pubads().disableInitialLoad();
});
var pbjs = pbjs || {};
pbjs.que = pbjs.que || [];
pbjs.que.push(function() {
pbjs.addAdUnits(adUnits);
pbjs.requestBids({
bidsBackHandler: initAdserver
});
});
function initAdserver() {
if (pbjs.initAdserverSet) return;
pbjs.initAdserverSet = true;
googletag.cmd.push(function() {
pbjs.que.push(function() {
pbjs.setTargetingForGPTAsync();
googletag.pubads().refresh();
});
});
}
setTimeout(function() {
initAdserver();
}, PREBID_TIMEOUT);
googletag.cmd.push(function() {
googletag.defineSlot('/49859683/RDV_web', div_2_sizes, 'div-gpt-ad-1498674722723-0').addService(googletag.pubads());
googletag.pubads().enableSingleRequest();
googletag.enableServices();
});
//
// Begin comScore Tag
var _comscore = _comscore || [];
_comscore.push({ c1: "2", c2: "5641052" });
(function() {
var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true;
s.src = (document.location.protocol == "https:" ? "https://sb" : "https://b") + ".scorecardresearch.com/beacon.js";
el.parentNode.insertBefore(s, el);
})();
// End comScore Tag
//
var domain= "rincondelvago.com";
//-->
Compartir
0 Me sirvió
0 No me sirvió
INVESTIGACION DE OPERACIONES I
1.- Considere el problema de programación lineal:
Máx. P = | 3X + | 2Y | |
Sujeta a: | 2X + | 2Y | " 8 |
| 3X + | 2Y | " 12 |
| X + | ½ Y | " 3 |
| X " 0 | Y " 0 | |
1
MAX P: 3X+2Y
SUJETA A: 2X+2Y " 8
3X+2Y " 12
X+1/2Y" 3
X " 0
Y " 0
2X+2Y = 8
3X+2Y = 12
X+1/2Y = 3
X = 0
Y= 0
2X+2Y = 8
2(0)+ 2Y = 8
2Y = 8
Y = 8/2 = 4
2X+2Y = 8
2X+2(0) = 8
2X = 8
X = 8/2 PUNTOS(4,4)
3X+2Y = 12
3(0)+2Y = 12
2Y = 12
Y= 12/2 = 6
3X+2Y = 12
3X+2(0) = 12
3X = 12
X = 12/3 = 4 PUNTOS(X4,Y6)
X+1/2Y = 3
0+1/2Y = 3
Y = 3 / 1/2 = 6
X+1/2(0) = 3
X = 3 PUNTOS (3,6)
2X+2Y = 8
-2 (X+1/2Y = 7)
2X-2Y = 6
-2X-Y = 6
Y = 2
2X+2(2) = 8
2X = 8 - 4
X = 4/2
X = 2
SUSTITUCIÓN DE P
3(2) + 2(2)
6+4 = 10
| | | | | | |
| | | | | | |
6 | | | | (4,4) | | |
| | | | (4,6) | | |
| | | | (3,6) | | |
| | | | | | Punto de |
5 | | | | | | intersección |
| | | | | | (2,2) |
| | | | | | |
| | | | | | |
4 | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
3 | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
2 | | | | | | |
| | | | | | |
| | | | | | |
1 | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | 1 | 2 | 3 | 4 | 5 |
2.- Considere el problema de programación lineal:
Min. P = | 2X + | 5Y | | |
Sujeta a: | 4X + | Y | " 40 | |
| 2X + | Y | " 30 | |
| X + | 3Y | " 30 | |
| X | " 0 | | |
| Y | " 0 | | |
MIN P: 2X+5Y
SUJETA A: 4X+Y " 40
2X+Y " 30
X+3Y" 30
X " 0
Y " 0
4X+Y = 40
2X+Y = 30
X + 3Y = 30
4X+Y = 40
4(0)+Y = 40
Y = 40
4X+Y = 40
4X+(0) = 40
4X = 40
X = 40/4 = 10 PUNTOS (10,40)
2X+Y = 30
2(0)+Y = 30
Y = 30
2X+Y = 30
2X+(0) = 30
2X = 30
X = 30/2 = 15 PUNTOS (15,30)
X+3Y = 30
(0)+3Y = 30
3Y = 30
Y = 30
Y = 30/3 = 10
X+3(0) = 30
X = 30 PUNTOS (30,10)
4X+Y = 40
-4 ( X+3Y = 30)
4X+Y = 40
- 4X-12Y = -120
0-11Y = 80
Y = -80/-11 = 7.2
4X+(7.2) = 40
4X = 40 - 7.2
X = 32.8 / 4 = 8.2
SUSTITUCIÓN DE P
2(8.2)+5(7.2)
52.4
| | | | | | | | |
| | | | | | | | |
40 | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
30 | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
25 | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
20 | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
15 | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
10 | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
3 Considere el problema de programación lineal:
Min. P = | 10X + | 15Y | | |
Sujeta a: | X + | Y | " 10 | |
| 3X + | Y | " 12 | |
| -2X + | 3Y | " 3 | |
| X | " 0 | | |
| Y | " 0 | | |
MIN P: 10X + 15Y
SUJETA A: X+Y " 10
3X+Y " 12
-2X + 3Y " 3
X " 0
Y = 0
X+Y = 10
3X +Y = 12
-2X+3Y = 3
X = 0
Y = 0
X+Y=10
O+Y = 10
Y = 10
X+Y = 10
X+0 = 10
X = 10 PUNTOS (10,10)
3X+Y = 12
3(0)+Y = 12
Y = 12
3X+Y = 12
3X+(0) = 12
3X = 12
X = 12/3 = 4 PUNTOS (4,12)
-2X+3Y = 3
-2(0)+3Y = 3
Y = 3/3 = 1
-2X+3Y = 3
-2X + 3(0) = 3
-2X = 3
X = 3/-2 = -1.5 PUNTOS (-1.5, 1)
(-3)X+Y = 10
-2X+3Y = 3
-3X-3Y = -30
-2X+3Y = 3
-5 = -27
X = -27/-5 = 5.4
5.4+Y = 10
5.4 = 10
Y =10-5.4
4.6
SUSTITUCIÓN DE P
10(5.4)+15(4.6)
123
| | 11 | | | | | | (10, | 10) | | | | INVESTIGACION DE OPERACIONES I
1.- Considere el problema de programación lineal:
Máx. P = | 3X + | 2Y | |
Sujeta a: | 2X + | 2Y | " 8 |
| 3X + | 2Y | " 12 |
| X + | ½ Y | " 3 |
| X " 0 | Y " 0 | |
1
MAX P: 3X+2Y
SUJETA A: 2X+2Y " 8
3X+2Y " 12
X+1/2Y" 3
X " 0
Y " 0
2X+2Y = 8
3X+2Y = 12
X+1/2Y = 3
X = 0
Y= 0
2X+2Y = 8
2(0)+ 2Y = 8
2Y = 8
Y = 8/2 = 4
2X+2Y = 8
2X+2(0) = 8
2X = 8
X = 8/2 PUNTOS(4,4)
3X+2Y = 12
3(0)+2Y = 12
2Y = 12
Y= 12/2 = 6
3X+2Y = 12
3X+2(0) = 12
3X = 12
X = 12/3 = 4 PUNTOS(X4,Y6)
X+1/2Y = 3
0+1/2Y = 3
Y = 3 / 1/2 = 6
X+1/2(0) = 3
X = 3 PUNTOS (3,6)
2X+2Y = 8
-2 (X+1/2Y = 7)
2X-2Y = 6
-2X-Y = 6
Y = 2
2X+2(2) = 8
2X = 8 - 4
X = 4/2
X = 2
SUSTITUCIÓN DE P
3(2) + 2(2)
6+4 = 10
| | | | | | |
| | | | | | |
6 | | | | (4,4) | | |
| | | | (4,6) | | |
| | | | (3,6) | | |
| | | | | | Punto de |
5 | | | | | | intersección |
| | | | | | (2,2) |
| | | | | | |
| | | | | | |
4 | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
3 | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
2 | | | | | | |
| | | | | | |
| | | | | | |
1 | | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | 1 | 2 | 3 | 4 | 5 |
2.- Considere el problema de programación lineal:
Min. P = | 2X + | 5Y | | |
Sujeta a: | 4X + | Y | " 40 | |
| 2X + | Y | " 30 | |
| X + | 3Y | " 30 | |
| X | " 0 | | |
| Y | " 0 | | |
MIN P: 2X+5Y
SUJETA A: 4X+Y " 40
2X+Y " 30
X+3Y" 30
X " 0
Y " 0
4X+Y = 40
2X+Y = 30
X + 3Y = 30
4X+Y = 40
4(0)+Y = 40
Y = 40
4X+Y = 40
4X+(0) = 40
4X = 40
X = 40/4 = 10 PUNTOS (10,40)
2X+Y = 30
2(0)+Y = 30
Y = 30
2X+Y = 30
2X+(0) = 30
2X = 30
X = 30/2 = 15 PUNTOS (15,30)
X+3Y = 30
(0)+3Y = 30
3Y = 30
Y = 30
Y = 30/3 = 10
X+3(0) = 30
X = 30 PUNTOS (30,10)
4X+Y = 40
-4 ( X+3Y = 30)
4X+Y = 40
- 4X-12Y = -120
0-11Y = 80
Y = -80/-11 = 7.2
4X+(7.2) = 40
4X = 40 - 7.2
X = 32.8 / 4 = 8.2
SUSTITUCIÓN DE P
2(8.2)+5(7.2)
52.4
| | | | | | | | |
| | | | | | | | |
40 | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
30 | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
25 | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
20 | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
15 | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
10 | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
3 Considere el problema de programación lineal:
Min. P = | 10X + | 15Y | | |
Sujeta a: | X + | Y | " 10 | |
| 3X + | Y | " 12 | |
| -2X + | 3Y | " 3 | |
| X | " 0 | | |
| Y | " 0 | | |
MIN P: 10X + 15Y
SUJETA A: X+Y " 10
3X+Y " 12
-2X + 3Y " 3
X " 0
Y = 0
X+Y = 10
3X +Y = 12
-2X+3Y = 3
X = 0
Y = 0
X+Y=10
O+Y = 10
Y = 10
X+Y = 10
X+0 = 10
X = 10 PUNTOS (10,10)
3X+Y = 12
3(0)+Y = 12
Y = 12
3X+Y = 12
3X+(0) = 12
3X = 12
X = 12/3 = 4 PUNTOS (4,12)
-2X+3Y = 3
-2(0)+3Y = 3
Y = 3/3 = 1
-2X+3Y = 3
-2X + 3(0) = 3
-2X = 3
X = 3/-2 = -1.5 PUNTOS (-1.5, 1)
(-3)X+Y = 10
-2X+3Y = 3
-3X-3Y = -30
-2X+3Y = 3
-5 = -27
X = -27/-5 = 5.4
5.4+Y = 10
5.4 = 10
Y =10-5.4
4.6
SUSTITUCIÓN DE P
10(5.4)+15(4.6)
123
| | 11 | | | | | | (10, | 10) | | | |
Descargar
Enviado por: | La Chika Master |
Idioma: | castellano |
País: | México |