Biología, Botánica, Genética y Zoología


Evolución de las especies


EVOLUCIÓN DE LAS ESPECIES

Evolución, en biología, descendencia con modificaciones, proceso por el que todos los seres vivos de la tierra han divergido, por descendencia directa, a partir de un origen único que existió hace más de 3.000 millones de años.

HISTORIAS DE LAS IDEAS EVOLUCIONISTAS

A lo largo de la historia ha sido siempre obvio, para la mayoría de las personas que la gran diversidad de vida, la increíble perfección con la que están dotados los organismos vivos para sobrevivir y multiplicarse, y la desconcertante complejidad de las estructuras vitales, sólo pueden ser obra de la creación divina. No obstante, una y otra vez han existido pensadores aislados que creían en que debía haber una alternativa a la creación sobrenatural. En la Antigua Grecia existía la noción de que las especies se transformaban en otras especies. Esta creencia estuvo apartada hasta que en el siglo XVIII fue retomada por pensadores progresistas como Pierre de Maupertuis, Erasmus Darwin y el hombre que se autodenominó el Chevalier de Lamarck. En la primera mitad del siglo XIX esta idea se hizo habitual en los círculos intelectuales, en especial en los geológicos, aunque siempre de forma vaga y sin que existiera una visión clara del mecanismo que podía originar estas modificaciones. Fue Charles Darwin (nieto de Erasmus) quien, incitado por la publicación del descubrimiento de Alfred Russel Wallace de su principio de la selección natural, estableció finalmente la teoría de la evolución a través de la publicación como El origen de las especies por medio de la selección natural en 1859, conocido por lo general como El origen de las especies. A partir de 1859 fue difícil dudar de que todas las especies vivas, incluyendo la nuestra, habían evolucionado de otras. La biología molecular moderna hace que resulte difícil dudar que el origen de todas las especies puede remontarse a un antecesor común único, que todas las formas de vida conocidas comparten el mismo código genético y que es muy improbable que hubieran podido dar con ello de forma independiente.

HISTORIA DE LA EVOLUCIÓN

La Tierra se formó hace 4.000 a 5.000 millones de años. Existen fósiles de criaturas microscópicas del tipo de las bacterias que prueban que surgió la vida hace alrededor de 3.000 millones de años. En algún momento entre estas dos fechas —la evidencia molecular supone que hace cerca de 4.000 millones de años— debió tener lugar el increíble suceso del origen de la vida. Nadie sabe qué ocurrió, aunque los teóricos coinciden en que la clave fue la aparición espontánea de seres que se autorreplicaban, es decir, algo equivalente a los "genes" en sentido general. Existe menos acuerdo sobre cómo llegó a producirse.

Es probable que al principio la atmósfera de la tierra contuviera metano, amoniaco, dióxido de carbono y otros gases que abundan aún hoy en día en otros planetas del sistema solar. Los químicos han reconstruido en los laboratorios estas condiciones primitivas a nivel experimental. Si se mezclan los gases adecuados con agua en un matraz, y se añade energía mediante una descarga eléctrica (simulando la iluminación primitiva), se sintetizan de forma espontánea sustancias orgánicas. Entre éstas se cuentan, en una proporción significativa, aminoácidos (unidades que construyen las proteínas, incluyendo todas las enzimas importantes que controlan los procesos químicos de la vida), purinas y pirimidinas (unidades que forman el ARN y ADN). Parece probable que al principio de la existencia de la tierra sucediera algo similar. Por consiguiente, el mar podría haber sido un "caldo" de compuestos orgánicos prebiológicos.

Como es natural, el hecho de que las moléculas orgánicas aparecieran en este caldo primitivo, no es suficiente. Como hemos mencionado antes, el paso más importante fue la aparición de moléculas que se autorreplicaban, capaces de producir copias de sí mismas. Hoy, la molécula más conocida que se autorreplica es el ADN (ácido desoxirribonucleico, véase ácidos nucleicos). La creencia de que el propio ADN no podría haber estado presente en el origen de la vida está muy extendida, ya que su replicación depende demasiado de estructuras muy especializadas que no pudieron existir antes del inicio de la propia evolución. El ADN ha sido descrito como una molécula de "alta tecnología" que apareció con toda probabilidad algún tiempo después del origen de la vida. Tal vez la molécula con la que está emparentada, el ARN, que aún desempeña varias funciones vitales en las células vivas, fue la molécula autorreplicativa original. O tal vez ésta fue un tipo de molécula diferente. Una vez que las moléculas autorreplicativas se habían formado por casualidad, pudo haberse iniciado algo parecido a la selección natural darwiniana: las variaciones presentes en las poblaciones podrían tener su origen en errores aleatorios en el copiado. Las variantes con una replicación especialmente buena habrían predominado automáticamente en el caldo primitivo, mientras que aquellas que no se replicaron, o que lo hicieron de forma errónea, estarían en una proporción relativamente menos numerosa. Una forma de selección natural molecular condujo a una eficacia mayor entre las moléculas que se replicaban.

Al tiempo que la competividad entre las moléculas que se replicaban aumentó, el éxito debió alcanzar a aquellas que conseguían desarrollar una habilidad o mecanismo especial para su autoconservación y replicación rápida. Estos mecanismos fueron construidos probablemente mediante la manipulación de otras moléculas, tal vez proteínas. Otros mecanismos manipulados fueron aquellas estructuras previas a las membranas que proporcionaron espacios circunscritos donde incluir las reacciones químicas. Pudo haber sido poco después de este estadio cuando las criaturas simples del tipo de las bacterias dieron lugar a los primeros fósiles hace entre más de 3.000 millones de años. El resto de la evolución puede ser considerada como una continuación de la selección natural de las moléculas replicativas, ahora denominadas genes, debida a su capacidad para construir por sí mismas estructuras eficaces (cuerpos celulares y multicelulares) para su propia supervivencia y reproducción. Tres mil millones de años es un periodo de tiempo largo, y parece que ha sido lo suficientemente prolongado como para haber dado origen a estructuras tan increíblemente complejas como el cuerpo de los vertebrados y de los insectos. Con frecuencia, se hace referencia a los genes como al medio que emplean los cuerpos para reproducirse. Esto es a primera vista innegable, aunque es más cierto el hecho de que los cuerpos son el medio que utilizan los genes para reproducirse.

Los fósiles no se depositaron más que en una pequeña proporción hasta la era del Cámbrico, hace casi 600 millones de años. Por aquel entonces, la mayoría de los principales filums animales (los grupos mayores en los que se clasifica el reino animal) habían aparecido. Como es obvio, las criaturas con partes esqueléticas duras, incluyendo los dientes, tienen más probabilidades de fosilizarse y por tanto predominan en el registro de fósiles. Un gran número de los primeros vertebrados aparecieron en yacimientos de hace más de 300 millones de años: criaturas pisciformes, completamente cubiertas por un armazón duro, tal vez adaptadas para escapar de los Euryptéridos, que eran depredadores submarinos gigantes del tipo de los escorpiones que abundaban en los mares en aquellos tiempos. Dentro de los vertebrados, la tierra fue colonizada en primer lugar, hace aproximadamente 250 millones de años, por peces con aletas lobuladas y pulmones, después por anfibios y por varios tipos de animales más perfeccionados que denominamos "reptiles". Los mamíferos, y más tarde, las aves, surgieron de dos ramas diferentes de reptiles. La rápida divergencia de los mamíferos en la rica variedad de tipos que existen hoy en día, desde las zarigüeyas a los elefantes, de los formívoros a los monos, parece que ha sido originada por el vacío dejado por la extinción catastrófica de los dinosaurios hace 65 millones de años.

Aunque, como es natural, nos detenemos más en la evolución de nuestra propia clase —los vertebrados, los mamíferos y los primates— estos constituyen sólo una pequeña rama del gran árbol de la vida. Se reconocen algunas docenas de filum animales, y los vertebrados constituyen sólo un subfilum dentro de uno de ellos. Además del reino animal, otras agrupaciones evolucionadas que se admiten de forma convencional como reinos son las plantas, los hongos y los protistas unicelulares, que se reúnen todos dentro de un grupo principal único, Eucariotas. Las criaturas que no son Eucariotas se denominan Procariotas, en las que se incluyen varios tipos de bacterias (el estado de virus como ser vivo es materia de debate: muchos de ellos son, con toda probabilidad, fragmentos "evadidos" de material genético, parásitos desde hace relativamente poco tiempo). Hoy en día, la mayoría acepta que las células eucariotas se originaron como una unión simbiótica de varias células procariotas. Dentro de las células eucariotas existen orgánulos, como las mitocondrias y los cloroplastos, que contienen su propio ADN y que son casi con certeza los descendientes lineales de procariotes ancestrales.

EVOLUCIÓN HUMANA

Nuestra propia especie se desarrolló durante los últimos millones de años dentro del grupo de los monos africanos gracias a un rápido e importante esfuerzo evolutivo. La evidencia molecular sugiere que nuestro último antecesor común con los chimpancés y gorilas vivió hace menos de cinco millones de años. Los documentos fósiles de nuestros antecesores inmediatos son en la actualidad mucho más abundantes que aquellos a los que se hace referencia en los textos más antiguos. Éstos demuestran varias formas arcaicas de Homo sapiens con crestas supraorbitales (incluyendo el famoso Neanderthal de Europa), que fue precedido por el Homo erectus que se remonta a casi dos millones de años. El Homo erectus vivió en Asia y en África, aunque existe controversia sobre si sobrevivieron algunos descendientes de los miembros asiáticos de esta especie. Varios antropólogos sustentan la teoría de que existió una segunda migración de Homo sapiens "fuera de África" en los últimos doscientos mil años, y que ellos representan al Homo sapiens antecesor del hombre actual, que vivió en África hace menos de un cuarto de millón de años (la denominada originalmente "Eva Africana"). El Homo erectus tenía un cerebro más pequeño que el Homo sapiens y en nuestros antecesores más primitivos éste era aún más pequeño. Considerando la posible interpolación de especies de Homo como el Homo habilis, parece que nuestros antecesores previos más inmediatos han sido miembros del género Australopitecus. Éstos se han descrito como monos bípedos y, desde luego, sus cerebros no fueron mucho mayores que los de los chimpancés actuales. Antes que ellos, nuestros ancestros se funden con los de los otros monos africanos, los chimpancés y los gorilas, y durante unas decenas de millones de años sufrieron adaptaciones cuya finalidad era la vida en los árboles, por ejemplo la vista hacia el frente, y manos y pies prensiles. Antes de aquello, parece que nuestros antepasados habían sido criaturas insectívoras pequeñas, del tipo de las musarañas, que vivían por la noche en un mundo dominado por dinosaurios. Estos mamíferos pequeños descendían del gran grupo de "reptiles parecidos a los mamíferos" que vivieron su gran esplendor antes de la aparición de los dinosaurios.

DARWINISMO

Es importante tener en cuenta dos aspectos muy distintos de la aportación de Darwin. Él recogió un gran número de pruebas que demostraban que la evolución había tenido lugar y elaboró la única teoría conocida sobre los mecanismos de la evolución de las especies. Estos descubrimientos también fueron realizados por Wallace de forma independiente. El nombre de Darwin se superpone en el recuerdo al de Wallace debido al gran acúmulo de evidencias que Darwin expuso con gran claridad y fuerza en el texto de El origen de las especies.

Darwin conocía algunas pruebas fósiles y las utilizó para demostrar el hecho de la evolución, aún cuando los geólogos de su época no fueron capaces de adjudicar fechas exactas a dichos fósiles. En 1862, el eminente físico lord Kelvin inquietó a Darwin al demostrar en su calidad de autoridad, y hoy sabemos que se equivocó, que el sol, y por tanto la tierra, no podía tener una antigüedad superior a 24 millones de años. Aunque esta estimación era mucho más acertada que la fecha de 4004 a.C que en aquel entonces apoyaba la iglesia para la creación, no concedía el tiempo suficiente que necesitaba la evolución que Darwin proponía. Kelvin utilizó esta estimación y su inmenso prestigio científico como herramientas en contra de la teoría de la evolución. Su error estaba basado en la presunción de que el sol liberaba calor mediante combustión, en lugar de por fusión nuclear, algo difícil de saber en aquella época.

Además de los fósiles, Darwin utilizó otra prueba menos directa, aunque en muchos sentidos más convincente, para demostrar el hecho de que la evolución había tenido lugar. Las modificaciones que habían sufrido los animales y plantas domesticados eran una prueba persuasiva de que las variaciones evolutivas eran posibles, y de la eficacia del equivalente artificial del mecanismo de evolución propuesto por Darwin, la selección natural. Por ejemplo, la existencia de razas locales aisladas tiene una explicación fácil en la teoría de la evolución; la teoría de la creación sólo podría explicarlas si se asumen numerosos "focos de creación" esparcidos por toda la superficie terrestre. La clasificación jerárquica en la que se distribuyen de forma natural los animales y las plantas sugiere un árbol familiar: la teoría de la creación tiene que establecer suposiciones complejas y artificiales acerca de los temas y variaciones que cruzaban la mente del creador. Darwin también utilizó como prueba de esta teoría el hecho de que algunos órganos observados en adultos y embriones parecían ser vestigios. De acuerdo con las teorías de la evolución, estos órganos, como los diminutos huesos de miembros ocultos de las ballenas, son un remanente de los miembros o patas que utilizaban para caminar sus antecesores terrestres. Su explicación plantea problemas a la teoría de la creación. Por lo general, la prueba de que el proceso de la evolución ha existido consiste en un gran número de observaciones detalladas que, en conjunto, adquieren sentido si asumimos la teoría de la evolución, pero que sólo podrían ser explicadas por la teoría de la creación si suponemos que el creador lo disponía cuidadosamente para confundirnos. Las pruebas moleculares modernas han contribuido a demostrar la teoría de la evolución más allá de las ideas más extravagantes de Darwin, y el proceso de la evolución tiene tantas garantías de seguridad como cualquier ciencia.

Refiriéndonos de nuevo a la evolución, la teoría que Darwin y Wallace propusieron de su mecanismo, la selección natural, tiene menos garantías. Ésta sugiere la supervivencia no aleatoria de variaciones de las características hereditarias originadas al azar. Otros británicos victorianos, como Patrick Matthew y Edward Blyth, habían propuesto con anterioridad algo parecido, aunque en apariencia lo consideraron sólo como una fuerza negativa. Parece que Darwin y Wallace fueron los primeros que se dieron cuenta de todo su potencial como una fuerza positiva para dirigir la evolución de todo ser vivo. Evolucionistas anteriores como el abuelo de Darwin, Erasmus, se habían inclinado hacia una teoría alternativa del mecanismo de la evolución, asociada en la actualidad por lo general al nombre de Lamarck. Esta enunciaba que las mejoras adquiridas durante la vida de un organismo, como el crecimiento de los órganos con el uso y su atrofia con el desuso, eran hereditarias. Esta teoría de la herencia de las características adquiridas tiene un atractivo emotivo (por ejemplo, para George Bernard Shaw en su prólogo a Vuelta a Matusalén), aunque la evidencia no la apoya, ni es teóricamente convincente. Incluso si la información genética pudiera de alguna manera viajar "hacia atrás" desde los cuerpos celulares al material hereditario, es casi inconcebible que el desarrollo embrionario pudiera invertirse de forma que las mejoras adquiridas durante la vida de un animal se codificaran de nuevo en sus genes. Inconcebible o no, la evidencia está en su contra. En la época de Darwin existían más dudas acerca de esta cuestión y, de hecho, el propio Darwin flirteó con una versión personalizada del Lamarckismo, en aquellos momentos en que su teoría de la selección natural se enfrentaba a dificultades.

Aquella dificultad surgió de las ideas que existían en aquella época sobre la naturaleza de la herencia. En el siglo XIX se asumía casi de forma universal que la herencia era un proceso combinado. En esta teoría, los descendientes no sólo tienen un carácter y apariencia intermedia, producto de la combinación de la de sus padres, sino que los factores hereditarios que transmiten a su propia descendencia son así mismo combinaciones intermedias debido a que se produce una inextricable fusión. Se puede demostrar que si la herencia es de tipo combinada es casi imposible que la selección natural darwiniana actúe, ya que la variación disponible se divide a la mitad en cada generación. Esto se expuso en 1867 y preocupó a Darwin lo suficiente como para conducirlo hacia el Lamarckismo. Este concepto pudo haber contribuido también al hecho aislado de que el darwinismo fuera relegado temporalmente a principios del siglo XX. La solución al problema que tanto inquietó a Darwin descansa en la teoría de la herencia particular desarrollada por Johann Mendel y publicada en 1865, pero que desafortunadamente no fue leída por Darwin, ni prácticamente por nadie, hasta después de su muerte.

NEODARWINISMO

Los estudios de Mendel, retomados a finales del siglo, demostraron lo que Darwin insinuó vagamente en cierta época, que la herencia es particular, no combinada. Sean o no los descendientes formas intermedias entre sus dos padres, ellos heredan y transmiten partículas hereditarias separadas; que hoy en día denominamos genes. Un individuo hereda o no un gen específico de uno de sus padres. Esto mismo puede aplicarse a los padres, por tanto un individuo puede también heredar o no un gen específico de uno de sus abuelos. Cada uno de sus genes procede de uno de sus abuelos y, antes de ello, de uno particular de sus bisabuelos. Este argumento puede ser aplicado repetidamente a un número indefinido de generaciones. Los genes únicos y separados se distribuyen de forma independiente a través de las generaciones como en las cartas en una baraja, en lugar de combinarse como los ingredientes de un puré.

Esto marca la diferencia de la plausibilidad matemática de la teoría de la selección natural. Si la herencia es particular, la selección natural puede actuar. Como establecieron por primera vez el matemático británico G. H. Hardy y el científico alemán W. Weinberg, no existe una tendencia propia de los genes a desaparecer del "conjunto" de genes. Si lo hacen será debido a procesos fortuitos, o a la selección natural —porque algo relativo a dichos genes influye en la probabilidad de que los individuos que los posean sobrevivan y se reproduzcan—. La versión moderna del darwinismo, denominada neodarwinismo, está basada en esta idea. Esta fue elaborada entre los años 1920 y 1930 por los genetistas R. A. Fisher, J. B. S. Haldane y Sewall Wright, y consolidada con posterioridad en la década de los años cuarenta en la síntesis conocida como Neodarwinismo. La revolución reciente experimentada por la biología molecular iniciada en la década de los años cincuenta, ha reforzado y confirmado, más que modificado, la teoría de los años 1930 y 1940.

La teoría genética moderna de la selección natural puede resumirse en lo siguiente: los genes de una población de animales o plantas que se entrecruzan sexualmente constituyen un "conjunto" de genes. Los genes compiten en este "conjunto" de la misma manera que las moléculas primitivas que se reproducían lo hacían en el "caldo" primitivo. En la práctica, la vida de los genes del "conjunto" de genes transcurre o asentándose en cuerpos individuales que ellos ayudan a construir, o transmitiéndose de un cuerpo a otro a través del espermatozoide o del óvulo en el proceso de la reproducción sexual. Esta mantiene los genes mezclados y el hábitat a largo plazo de los genes es el "conjunto" genético. Cualquier gen que se origina en el "conjunto" genético es resultado de una mutación u error aleatorio en el proceso de copia de los genes. Una vez que se ha producido una mutación nueva, ésta puede extenderse a través del "conjunto" genético por medio de la mezcla sexual. La mutación es el origen último de la variación genética. La reproducción sexual y la recombinación genética debida al cruzamiento, muestran que la variación genética se distribuye con rapidez y se recombina en el "conjunto" genético. Es probable que de cualquier gen de un "conjunto" genético existan varias copias que procedan de la misma mutación, o de mutaciones paralelas independientes. Por consiguiente, se puede decir que cada gen tiene una frecuencia en el "conjunto" de genes. Mientras que algunos genes, como el del albinismo, son genes raros en el "conjunto", otros son habituales. En el ámbito de la genética, la evolución puede definirse como el proceso responsable de la variación de la frecuencia de los genes en el "conjunto" genético.

Existen varias razones que explican la causa por la que la frecuencia de los genes puede variar: inmigración, emigración, desplazamientos aleatorios y selección natural. La inmigración, emigración y las desviaciones aleatorias no tienen demasiado interés desde el punto de vista de la adaptación, aunque en la práctica pueden ser muy importantes. Sin embargo, la selección natural es fundamental para explicar la mejora de la adaptación, la compleja organización funcional de la vida y aquellos atributos de progreso que, discutiblemente, se pueden exhibir como evolución. La dotación genética de los organismos influye sobre su propio desarrollo. Algunos tienen mejores cualidades para sobrevivir y reproducirse que otros. Los organismos que son buenos, es decir aquellos cuyas características para sobrevivir y reproducirse son mejores, tenderán a aportar más genes a los "conjuntos" genéticos del futuro que aquellos cuyas características sean malas para estos fines: los genes que tienden a formar organismos buenos serán predominantes en los "conjuntos" genéticos. La selección natural se traduce en el distinto éxito que alcanzan los organismos en la supervivencia y reproducción: esto es importante debido a las consecuencias que supone para la supervivencia de los genes en el "conjunto" genético.

No todas las muertes selectivas conducen a cambios evolutivos. Por el contrario, la mayor parte de la selección natural se denomina selección estabilizadora, por cuanto que elimina genes del "conjunto" genético que tienden a producir desviaciones de una forma que ya es óptima. Pero cuando las condiciones del medio cambian, bien por una catástrofe natural o por una evolución más perfecta de otras criaturas (depredadores, víctimas, parásitos y otros), la selección puede conducir a una variación evolutiva.

EL ORIGEN DE LAS ESPECIES Y LA EVOLUCIÓN DE LA DIVERSIDAD

La evolución bajo la influencia de la selección natural conduce a una mejora adaptativa, y se encuentre o no bajo esta influencia, lleva a la divergencia y a la diversidad. En un momento o en otro, muchos cientos de millones de especies diferentes han evolucionado a partir de un antecesor único. El proceso por el que una especie se divide en dos se denomina especiación. La divergencia posterior conduce a una subdivisión más amplia de las unidades taxonómicas —géneros, familias, órdenes, clases, etc—. Incluso criaturas tan diferentes como los caracoles y los monos, derivan de antecesores que en un proceso de especiación se separaron originalmente de una especie única.

La mayoría acepta que el primer paso en la especiación es normalmente la separación geográfica. Una especie se divide de forma accidental en dos poblaciones separadas geográficamente. Con frecuencia pueden existir subpoblaciones aisladas en islas, que en sentido general incluyen islas de agua en tierra (lagos), islas de vegetación en desiertos (oasis), etc. Incluso en una pradera los árboles puede ser islas efectivas para algunos de sus pequeños habitantes. El aislamiento geográfico significa ausencia de flujo genético y carencia de contaminación de cada conjunto de genes por otro. Bajo estas condiciones, la frecuencia media de los genes puede variar en los dos conjuntos genéticos, bien por las distintas presiones de selección o por los cambios estadísticos aleatorios en las dos áreas. Después de un periodo de divergencia genética suficiente en situación de aislamiento geográfico, las dos subpoblaciones dejan de ser capaces de entrecruzarse incluso si circunstancias posteriores dan lugar a que se reúnan de nuevo. Cuando dejan de poder reproducirse entre ellos, se dice que se ha producido la especiación y que una nueva especie (o dos) ha surgido. Esta definición "biológica" de las especies no se puede aplicar a los organismos que no se reproducen sexualmente. La sugerencia de que la selección natural puede por sí misma reforzar la divergencia entre especies incipientes penalizando cualquier tendencia hacia el hibridismo, es controvertida.

Problemas y argumentos

¿Es progresiva la evolución?

La antigua idea neo-platónica de una gran cadena de la vida, con seres unicelulares en el extremo inferior y el hombre inmediatamente por debajo de los ángeles, es previa a la evolución aunque, por desgracia, se confunde con ella con facilidad. Lamarck veía la evolución como el ascenso progresivo en una escalera con formas de vida destinadas a convertirse en otras situadas en un nivel superior. "Producir sus formas intermedias", es el concepto erróneo que subyace al desafío de los creacionistas hacia los evolucionistas. Algunas veces incluso solicitan formas intermedias entre perros y gatos. Como es natural, en el modelo de evolución actual las distintas especies no son los peldaños de una escalera pero sí las ramas de un árbol. Frases como "descendiendo en la escala evolutiva a los gusanos planos", o "ascendiendo a los primates más superiores" están mal orientadas y no tienen lugar en el léxico de la evolución, al menos cuando nos referimos a animales actuales.

.

Cuando nos referimos a animales del pasado y al archivo fósil hay que preguntarse si existe un cambio progresivo con el tiempo. Con frecuencia los biólogos disienten en la respuesta. Parte de los desacuerdos residen en la terminología sobre qué es lo que se entiende por "progreso". Desde una perspectiva global, el progreso es innegable. Antes de una fecha determinada toda la vida era procariota. Después de ésta hubo vida procariota y eucariota

.

Otra fecha decisiva separa el tiempo en el que toda la vida eucariótica era unicelular, de otro posterior en el que era unicelular y pluricelular. Fechas posteriores separan la vida puramente acuática de la vida terrestre y acuática, y después de la acuática, terrestre, y aérea. Respecto a si el tamaño medio cerebral ha aumentado o no, está claro que el tamaño máximo del cerebro lo ha hecho.

Otro sentido de "progresiva" se refiere a las variaciones dentro de linajes de descendientes de antecesores particulares. Se ha mantenido que existe una tendencia en varios linajes de vertebrados fósiles a que el tamaño cerebral aumente, por separado y de forma repetida. La Regla de Cope establece que el tamaño del cuerpo tiende a incrementarse con el tiempo dentro del linaje fósil, pero esta regla no es de ninguna manera cierta en sentido universal. El "efecto de la Reina Roja" (que recibe el nombre del personaje de Lewis Carrol que informó a Alicia de que en su país había que correr tanto como se pudiera para permanecer en el mismo lugar) es una explicación teórica para un progreso local limitado de este tipo.

Mucho antes de que el nombre de la Reina Roja fuese acuñado, R. A. Fisher había reconocido la importancia del efecto. Bajo el encabezamiento de "Deterioro del medio" Fisher (1930) escribió: "Si un organismo se sitúa en cualquier nivel alto de adaptación para el lugar que ocupa en su medio, esta adaptación estará constantemente amenazada. Por lo tanto, para la mayoría de los organismos el entorno físico puede ser considerado como en constante deterioro. Es probable que los cambios evolutivos de los organismos asociados sean más importantes que los cambios climáticos. Al tiempo que cada organismo se perfecciona, también lo harán sus enemigos y competidores, y ésto, desde el punto de vista que afecta a cada organismo y tal vez de forma más importante, tendrá el mismo efecto sobre el deterioro del medio". En esta cita hay que considerar "especies" en el lugar de "organismos". La idea esencial es similar a la de la carrera armamentista: como los depredadores "gastan" más en adaptaciones dirigidas a cazar una presa, la víctima —"para mantenerse en el mismo lugar"— tiene que gastar más en las adaptaciones que le permiten escapar de los depredadores. Y viceversa, de modo que existe una espiral progresiva de perfecciones costosas en el equipamiento, aunque su eficacia no mejora ya que el otro bando en la carrera armamentística progresa en paralelo.

TEORÍA NATURAL

La selección natural es la única teoría conocida que puede explicar la existencia de la adaptación en la naturaleza. Sin embargo, esto no significa que la selección natural sea la fuerza que dirige toda la evolución, ya que no toda variación evolutiva es necesariamente adaptativa. Concretamente, a escala molecular existe un apoyo creciente a la idea de que la mayoría de las variaciones evolutivas son en realidad neutrales. Esta "teoría neutral de la evolución" ha sido defendida por el distinguido genetista japonés Motoo Kimura. La teoría neutral no afirma que los genes no estén realizando algo útil, más bien sugiere que formas diferentes del mismo gen son indistinguibles en cuanto a sus efectos. Por ello, una mutación de una forma de un gen a otra es neutral en cuanto a que la modificación no afecta al fenotipo. El ejemplo más obvio es sinónimo de mutación. Cuando el código genético esta "degenerado" (esto es, más de un codón puede conducir al mismo aminoácido), una mutación de un gen a su sinónimo exacto no tiene el efecto que la selección natural "predice", aunque en el ámbito de la genética molecular se considera una mutación verdadera. Incluso donde las mutaciones no tienen el mismo significado en el DNA, las proteínas que éstas codifican pueden sufrir una acción enzimática idéntica (ya que la mutación puede no afectar a la estructura tridimensional de la proteína). La expresión fenotípica final de las dos formas del gen puede ser idéntica por tanto, y la mutación de una forma por otra es neutral. Kimura y sus colaboradores apuntaron la evidencia de que la mayoría de las sustituciones de los genes en la naturaleza era neutral. Es decir, bajo su punto de vista, es la principal causa de variación genética en las poblaciones.

La teoría neutral se describe algunas veces como anti-darwiniana, aunque ello es un gran error. Las mutaciones neutrales son equivalentes a los cambios experimentados por la tipografía desde la época de los romanos a los días de Baskerville: el significado de las frases escritas es invariable. La selección darwiniana juzga a los genes por su expresión fenotípica —por el significado de sus frases—. Si una mutación carece de efectos sobre el fenotipo —es puramente un cambio de tipografía— la selección natural será indiferente a ésta. La teoría neutral no se pronuncia, de una forma o de otra, acerca de la importancia de la selección darwiniana a nivel de los fenotipos.

La teoría neutral fue muy discutida cuando se propuso por primera vez a finales de la década de los años sesenta, tal vez en parte porque fue mal interpretada, e incluso extendida de forma errónea, como anti-darwiniana. Desde aquel momento ha ganado terreno y en la actualidad, es apoyada por la mayoría. Una consecuencia interesante de ésta es la idea de un "reloj genético molecular". Si la mayoría de las sustituciones genéticas son neutras, es de esperar que la tasa de sustituciones sea más o menos constante para cualquier locus genético determinado. Suponiendo ésto, la época en la que vivió el antecesor común de cualquier pareja de especies se puede calcular a partir del número de diferencias en los aminoácidos entre ambas especies. Al principio, dichas fechas pueden ser medidas en unidades arbitrarias, aunque pueden calibrarse en millones de años para cualquier gen dado, usando linajes donde el registro fósil es rico. Los puntos de bifurcación que antes hemos mencionado entre los linajes del hombre y de los monos se han fechado a partir de pruebas de este tipo.

NIVELES DE SELECCIÓN

La selección natural elige el "más apto", aunque ¿qué es el más apto?. Para Darwin la respuesta era clara: los organismos más capacitados. Para Darwin aptitud significaba cualquier cualidad que ayudaba a un organismo a sobrevivir y reproducirse. Los componentes de la aptitud eran cualidades como extremidades que permitían correr a gran velocidad, agudeza de visión, leche abundante de alta calidad. Más tarde "aptitud" se convirtió en un término técnico utilizado por genetistas matemáticos para referirse a "todo aquello que es favorecido por la selección natural". Como una consecuencia trivial de ésto, es posible argumentar que "la supervivencia del más apto" es una tautología.

Sin oponerse al énfasis que Darwin concedía a la supervivencia y a la reproducción, otros evolucionistas han considerado la selección natural como una elección entre grandes unidades: grupos de individuos o especies. Por ejemplo, las limitaciones de la agresión han sido explicadas como consecuencia de la selección natural entre las especies: aquellas especies cuyos miembros se dañaban entre sí se extinguieron. Actualmente el "seleccionismo de grupo", al menos en este sentido simplista e ingenuo, está desacreditado. Las décadas de los años sesenta y setenta fueron testigos de una marcha atrás de los teóricos hacia el rigor del neodarwinismo de la década de los años treinta (ver arriba), lejos del seleccionismo de grupo. Los cambios evolutivos vienen dados por la sustitución de genes en los conjuntos de genes y éstos suelen ser resultado de las diferencias en los efectos genéticos sobre la supervivencia y la reproducción. También se reconocieron formas indirectas y sutiles en las que los genes pueden influir en su supervivencia. Por ejemplo, las hormigas obreras son estériles, pero pueden afectar a la representación de copias de sus genes en el conjunto de genes, favoreciendo la reproducción de sus parientes cercanos, como sus madres o sus hermanas reproductoras. En un progreso teórico notable, W.D. Hamilton propuso "el más apto inclusivo" como una generalización de "el más apto darwiniano" que tenía en cuenta dichos efectos familiares indirectos. La frase "selección familiar" se utiliza adecuadamente para distinguir esta importante teoría de la desacreditada "selección de grupos" a la que algunas veces se parece si se toma en un sentido superficial y erróneo.

SELECCIÓN SEXUAL

Darwin hizo una distinción entre selección natural, que favorecía los órganos y estructuras orientadas a la supervivencia, y selección sexual que favorecía aquellos logros dirigidos a obtener pareja, por combate directo con los miembros de su propio sexo, o por su atractivo para el sexo opuesto (que a veces se denominan selección intrasexual y selección intersexual, respectivamente, aunque su uso incita a error). Darwin quedó impresionado por el hecho de que, con frecuencia, las cualidades de atractivo sexual eran contrarias a aquellas que conducían a la supervivencia. Un ejemplo notorio son las colas llamativas e incómodas de las aves del paraíso, que deben estorbarles durante el vuelo y son visibles para los depredadores. Sin embargo, Darwin se dio cuenta que estos obstáculos podrían "merecer la pena" si también atraían a las hembras. Es probable que un macho que consigue persuadir a una hembra para que se aparee con él en lugar de con un rival contribuya con sus genes a los conjuntos de genes futuros. Los genes de las colas con atractivo sexual tienen por fuerza una ventaja que compensa a las desventajas que se admiten.

La distinción establecida por Darwin entre selección natural y sexual algunas veces conduce a confusión. Por ejemplo, desde el punto de vista de Darwin la matriz y las ubres, aunque son órganos de reproducción, evolucionan por selección natural, no por selección sexual. Esto es debido a que no ayudan a sus poseedores a conseguir pareja en los enfrentamientos con competidores del mismo sexo. Los penes también evolucionan bajo la influencia de la selección natural, no de la selección sexual, a menos que algunas características de su aspecto ayuden a los machos a asegurarse las hembras frente a machos rivales. Darwin podría admitir que por ejemplo el pene brillante de ciertos monos evolucionó con probabilidad por selección sexual. Los dientes, en la medida en la que están adaptados para la alimentación, son modelados por la selección natural. En la medida en que son utilizados por los machos para intimidar a sus rivales masculinos (p. ej. los colmillos de un jabalí) o atraer a su pareja (¿quizás los colmillos de los narvales?), son modelados mediante selección sexual.

Wallace, el codescubridor de la selección natural, disentía de Darwin respecto a la selección sexual. Él creía que detrás de todas las características aparentemente ornamentales existía una función útil que debíamos buscar. Más tarde hizo la concesión de que algunos adornos eran utilizados por los machos para atraer a las hembras, aunque pensaba que dichos machos estaban siempre anunciando esta cualidad que las hembras beneficiaban mediante la elección. Por el contrario, Darwin creía que los caracteres seleccionados sexualmente como las colas de las aves del paraíso eran inútiles excepto en la medida en que se adecuaban a los caprichos de la hembra. Consideró estos últimos como algo dado, algo que no necesitaba explicación.

Más tarde algunos escépticos creyeron que la selección natural podría actuar inevitablemente sobre las hembras para cambiar sus gustos, de modo que no fueran atraídas por más tiempo por cualidades que al heredar sus hijos sólo podían ponerlos en peligro. Tras la muerte de Darwin, la teoría de la selección sexual fue desprestigiada durante un tiempo. El gran genetista británico R.A. Fisher, estadista y eugenicista ya mencionado con anterioridad, resucitó la teoría empleando ingeniosos razonamientos. Se supone que el gusto de las hembras está bajo control genético. Cada individuo, de cualquier sexo, tenderá a heredar los genes maternos que favorecieron la elección de su padre, y los genes paternos para las cualidades que le hicieron ser elegido. Esta correlación, llamada hoy técnica e inútilmente desequilibrio de unión, puede en teoría, bajo algunas circunstancias, conducir a "una fuga" de la selección de numerosas exageraciones extravagantes de la cualidad preferida. Fisher sostiene que incluso si la tendencia prevalente en el gusto de las hembras es por cualidades de los machos que son perjudiciales para la supervivencia de éstos, la selección puede tender a favorecer el atractivo sexual por su propio bien. Tales extravagancias como el abanico del pavo real, los entramados construidos por determinados pájaros de Australia y Nueva Guinea, y la misteriosa belleza del canto de las aves, pueden haber evolucionado a través del tipo de selección sexual de fuga concebida por Fisher.

Algunos teóricos más recientes han retornado a un punto de vista más parecido al de Wallace. Ellos creen que la ornamentación extravagante de los machos anuncia su cualidad masculina original y que su extravagancia, en apariencia exagerada, se desarrolla como una forma de confirmar dicha cualidad ante hembras que de otra manera seguirían escépticas. Esta controversia entre el punto de vista de Darwin respecto a la ornamentación como llamamiento a "el gusto" femenino arbitrario, y el de Wallace como anuncio de una cualidad original, persiste hasta nuestros días con enfoques actuales, y no muestra señales de alcanzar una resolución final.




Descargar
Enviado por:Kinze
Idioma: castellano
País: España

Te va a interesar