Ecología y Medio Ambiente


Energía solar y eólica


2.1- HISTORIA.

Energía solar, energía radiante producida en el Sol como resultado de reacciones nucleares de fusión. Llega a la Tierra a través del espacio en cuantos de energía llamados fotones, que interactúan con la atmósfera y la superficie terrestres. La intensidad de la radiación solar en el borde exterior de la atmósfera, si se considera que la Tierra está a su distancia promedio del Sol, se llama constante solar, y su valor medio es 1,37 × 106 erg/s/cm2, o unas 2 cal/min/cm2. Sin embargo, esta cantidad no es constante, ya que parece ser que varía un 0,2% en un periodo de 30 años. La intensidad de energía real disponible en la superficie terrestre es menor que la constante solar debido a la absorción y a la dispersión de la radiación que origina la interacción de los fotones con la atmósfera.

2.2-CARACTERÍSTICAS Y APLICACIONES

Transformación natural de la energía solar :

La recogida natural de energía solar se produce en la atmósfera, los océanos y las plantas de la Tierra. Las interacciones de la energía del Sol, los océanos y la atmósfera, por ejemplo, producen vientos, utilizados durante siglos para hacer girar los molinos. Los sistemas modernos de energía eólica utilizan hélices fuertes, ligeras, resistentes a la intemperie y con diseño aerodinámico que, cuando se unen a generadores, producen electricidad para usos locales y especializados o para alimentar la red eléctrica de una región o comunidad.

Asimismo, los océanos representan un tipo natural de recogida de energía solar. Como resultado de su absorción por los océanos y por las corrientes oceánicas, se producen gradientes de temperatura. En algunos lugares, estas variaciones verticales alcanzan 20 °C en distancias de algunos cientos de metros. Cuando hay grandes masas a distintas temperaturas, los principios termodinámicos predicen que se puede crear un ciclo generador de energía que extrae energía de la masa con mayor temperatura y transferir una cantidad a la masa con temperatura menor. La diferencia entre estas energías se manifiesta como energía mecánica (para mover una turbina, por ejemplo), que puede conectarse a un generador, para producir electricidad. Estos sistemas, llamados sistemas de conversión de energía térmica oceánica (CETO), requieren enormes intercambiadores de energía y otros aparatos en el océano para producir potencias del orden de megavatios.

Recogida directa de energía solar

La recogida directa de energía solar requiere dispositivos artificiales llamados colectores solares, diseñados para recoger energía, a veces después de concentrar los rayos del Sol. La energía, una vez recogida, se emplea en procesos térmicos o fotoeléctricos, o fotovoltaicos.

Colectores de placa plana

Energía solar y eólica
En los procesos térmicos los colectores de placa plana interceptan la radiación solar en una placa de absorción por la que pasa el llamado fluido portador. Éste, en estado líquido o gaseoso, se calienta al atravesar los canales por transferencia de calor desde la placa de absorción.

La energía transferida por el fluido portador, dividida entre la energía solar que incide sobre el colector y expresada en porcentaje, se llama eficiencia instantánea del colector. Los colectores de placa plana tienen, en general, una o más placas cobertoras transparentes para intentar minimizar las pérdidas de calor de la placa de absorción en un esfuerzo para maximizar la eficiencia. Son capaces de calentar fluidos portadores hasta 82 °C y obtener entre el 40 y el 80% de eficiencia.

Los colectores de placa plana se han usado de forma eficaz para calentar agua y para calefacción. Los sistemas típicos para casa-habitación emplean colectores fijos, montados sobre el tejado. En el hemisferio norte se orienta hacia el Sur y en el hemisferio sur hacia el Norte. El ángulo de inclinación óptimo para montar los colectores depende de la latitud. En general, para sistemas que se usan durante todo el año, como los que producen agua caliente, los colectores se inclinan (respecto al plano horizontal) un ángulo igual a los 15° de latitud y se orientan unos 20° latitud S o 20° de latitud N.

Colectores de concentración

Para aplicaciones como el aire acondicionado y la generación central de energía y de calor para cubrir las grandes necesidades industriales, los colectores de placa plana no suministran, en términos generales, fluidos con temperaturas bastante elevadas como para ser eficaces. Se pueden usar en una primera fase, y después el fluido se trata con medios convencionales de calentamiento. Los concentradores deben moverse para seguir al Sol si se quiere que actúen con eficacia; los dispositivos utilizados para ello se llaman heliostatos.

Hornos solares

Los hornos solares son una aplicación importante de los concentradores de alta temperatura. El mayor, situado en Odeillo, en la parte francesa de los Pirineos, tiene 9.600 reflectores con una superficie total de unos 1.900 m2 para producir temperaturas de hasta 4.000 °C. Estos hornos son ideales para investigaciones, por ejemplo, en la investigación de materiales, que requieren temperaturas altas en entornos libres de contaminantes.

Enfriamiento solar

Se puede producir frío con el uso de energía solar como fuente de calor en un ciclo de enfriamiento por absorción. Uno de los componentes de los sistemas estándar de enfriamiento por absorción, llamado generador, necesita una fuente de calor. Puesto que, en general, se requieren temperaturas superiores a 150 °C para que los dispositivos de absorción trabajen con eficacia, los colectores de concentración son más apropiados que los de placa plana.

Electricidad fotovoltaica

Las células solares hechas con obleas finas de silicio, arseniuro de galio u otro material semiconductor en estado cristalino, convierten la radiación en electricidad de forma directa. Ahora se dispone de células con eficiencias de conversión superiores al 30%. Por medio de la conexión de muchas de estas células en módulos, el coste de la electricidad fotovoltaica se ha reducido mucho. El uso actual de las células solares se limita a dispositivos de baja potencia, remotos y sin mantenimiento, como boyas y equipamiento de naves espaciales.

Energía solar en el espacio

Un proyecto futurista propuesto para producir energía a gran escala propone situar módulos solares en órbita alrededor de la Tierra. En ellos la energía concentrada de la luz solar se convertiría en microondas que se emitirían hacia antenas terrestres para su conversión en energía eléctrica. Para producir tanta potencia como cinco plantas grandes de energía nuclear (de mil millones de vatios cada una), tendrían que ser ensamblados en órbita varios kilómetros cuadrados de colectores, con un peso de más de 4000 t; se necesitaría una antena en tierra de 8 m de diámetro. Se podrían construir sistemas más pequeños para islas remotas, pero la economía de escala supone ventajas para un único sistema de gran capacidad.

Dispositivos de almacenamiento de energía solar

Debido a la naturaleza intermitente de la radiación solar como fuente energética durante los periodos de baja demanda debe almacenarse el sobrante de energía solar para cubrir las necesidades cuando la disponibilidad sea insuficiente. Además de los sistemas sencillos de almacenamiento como el agua y la roca, se pueden usar, en particular en las aplicaciones de refrigeración, dispositivos más compactos que se basan en los cambios de fase característicos de las sales eutécticas (sales que se funden a bajas temperaturas). Los acumuladores pueden servir para almacenar el excedente de energía eléctrica producida por dispositivos eólicos o fotovoltaicos. Un concepto más global es la entrega del excedente de energía eléctrica a las redes existentes y el uso de éstas como fuentes suplementarias si la disponibilidad solar es insuficiente. Sin embargo, la economía y la fiabilidad de este proyecto plantean límites a esta alternativa.

2.3-LA ENERGIA SOLAR EN ESPAÑA

En España ha supuesto y supondrá una parte de la energía utilizada por el país, las principales centrales solares de España se encuentran en el sur de España donde mas sol hace, sin el sol los paneles solares no servirían para nada.

Los paneles solares son bastante caros y no es que por ahora se estén usando mucho, su instalación es muy costosa y si se usan para algo es para la calefacción del agua y para pocas mas cosas. 3.1-HISTORIA

Los molinos movidos por el viento tienen un origen remoto. En el siglo VII d.C. ya se utilizaban molinos elementales en Persia (hoy, Irán) para el riego y moler el grano. En estos primeros molinos la rueda que sujetaba las aspas era horizontal y estaba soportada sobre un eje vertical. Estas máquinas no resultaban demasiado eficaces, pero, aún así, se extendieron por China y el Oriente Próximo.

En Europa los primeros molinos aparecieron en el siglo XII en Francia e Inglaterra y se distribuyeron por el continente. Eran unas estructuras de madera, conocidas como torres de molino, que se hacían girar a mano alrededor de un poste central para levantar sus aspas al viento.

El molino de torre se desarrolló en Francia a lo largo del siglo XIV. Consistía en una torre de piedra coronada por una estructura rotativa de madera que soportaba el eje del molino y la maquinaria superior del mismo.

Estos primeros ejemplares tenían una serie de características comunes. De la parte superior del molino sobresalía un eje horizontal. De este eje partían de cuatro a ocho aspas, con una longitud entre 3 y 9 metros. Las vigas de madera se cubrían con telas o planchas de madera. La energía generada por el giro del eje se transmitía, a través de un sistema de engranajes, a la maquinaria del molino emplazada en la base de la estructura.

3.2-MAQUINAS EOLICAS: CLASIFICACION Y APLICACIONES

Además de emplearse para el riego y moler el grano, los molinos construidos entre los siglos XV y XIX tenían otras aplicaciones, como el bombeo de agua en tierras bajo el nivel del mar, aserradores de madera, fábricas de papel, prensado de semillas para producir aceite, así como para triturar todo tipo de materiales. En el siglo XIX se llegaron a construir unos 9.000 molinos en Holanda.

El avance más importante fue la introducción del abanico de aspas, inventado en 1745, que giraba impulsado por el viento. En 1772 se introdujo el aspa con resortes. Este tipo de aspa consiste en unas cerraduras de madera que se controlan de forma manual o automática, a fin de mantener una velocidad de giro constante en caso de vientos variables. Otros avances importantes han sido los frenos hidráulicos para detener el movimiento de las aspas y la utilización de aspas aerodinámicas en forma de hélice, que incrementan el rendimiento de los molinos con vientos débiles.

El uso de las turbinas de viento para generar electricidad comenzó en Dinamarca a finales del siglo pasado y se ha extendido por todo el mundo. Los molinos para el bombeo de agua se emplearon a gran escala durante el asentamiento en las regiones áridas del oeste de Estados Unidos. Pequeñas turbinas de viento generadoras de electricidad abastecían a numerosas comunidades rurales hasta la década de los años treinta, cuando en Estados Unidos se extendieron las redes eléctricas. También se construyeron grandes turbinas de viento en esta época.

Turbinas de viento modernas

Las modernas turbinas de viento se mueven por dos procedimientos: el arrastre, en el que el viento empuja las aspas, y la elevación, en el que las aspas se mueven de un modo parecido a las alas de un avión a través de una corriente de aire. Las turbinas que funcionan por elevación giran a más velocidad y son, por su diseño, más eficaces. Las turbinas de viento pueden clasificarse en turbinas de eje horizontal, en las que los ejes principales están paralelos al suelo y turbinas de eje vertical, con los ejes perpendiculares al suelo. Las turbinas de ejes horizontales utilizadas para generar electricidad tienen de una a tres aspas, mientras que las empleadas para bombeo pueden tener muchas más. Entre las máquinas de eje vertical más usuales destacan las Savonius, cuyo nombre proviene de sus diseñadores, y que se emplean sobre todo para bombeo; y las Darrieus, una máquina de alta velocidad que se asemeja a una batidora de huevos.

Bombeadoras de agua

Una bombeadora de agua es un molino con un elevado momento de torsión y de baja velocidad, frecuente en las regiones rurales de Estados Unidos. Las bombeadoras de agua se emplean sobre todo para drenar agua del subsuelo. Estas máquinas se valen de una pieza rotatoria, cuyo diámetro suele oscilar entre 2 y 5 m, con varias aspas oblicuas que parten de un eje horizontal. La pieza rotatoria se instala sobre una torre lo bastante alta como para alcanzar el viento. Una larga veleta en forma de timón dirige la rueda hacia el viento. La rueda hace girar los engranajes que activan una bomba de pistón. Cuando los vientos arrecian en exceso, unos mecanismos de seguridad detienen de forma automática la pieza rotatoria para evitar daños en el mecanismo.

La energía eólica, que no contamina el medio ambiente con gases ni agrava el efecto invernadero, es una valiosa alternativa frente a los combustibles no renovables como el petróleo. Los generadores de turbinas de viento para producción de energía a gran escala y de rendimiento satisfactorio tienen un tamaño mediano (de 15 a 30 metros de diámetro, con una potencia entre 100 y 400 kW). Algunas veces se instalan en filas y se conocen entonces como granjas de viento. En California se encuentran algunas de las mayores granjas de viento del mundo y sus turbinas pueden generar unos 1.120 MW de potencia (una central nuclear puede generar unos 1.100 MW).

El precio de la energía eléctrica producida por ese medio resulta competitivo con otras muchas formas de generación de energía. En la actualidad Dinamarca obtiene más del 2% de su electricidad de las turbinas de viento, también empleadas para aumentar el suministro de electricidad a comunidades insulares y en lugares remotos. En Gran Bretaña, uno de los países más ventosos del mundo, los proyectos de turbinas de viento, especialmente en Gales y en el noroeste de Inglaterra, generan una pequeña parte de la electricidad procedente de fuentes de energía renovable. En España se inauguró en el año 1986 un parque eólico de gran potencia en Tenerife, Canarias.

3.3-LA ENERGIA EOLICA EN ESPAÑA

Más tarde se hicieron otras instalaciones en La Muela (Zaragoza), el Ampurdán (Gerona), Estaca de Bares (La Coruña) y Tarifa (Cádiz), ésta dedicada fundamentalmente a la investigación. La energía eólica supone un 6% de la producción de energía primaria en los países de la Unión Europea. Para España supone un 10% de la energía gastada, las granjas de viento mas importantes de España se encuentran en: Tarifa, Cádiz, Navarra y Galicia

Biomasa, abreviatura de masa biológica, cantidad de materia viva producida en un área determinada de la superficie terrestre, o por organismos de un tipo específico. El término es utilizado con mayor frecuencia en las discusiones relativas a la energía de biomasa, es decir, al combustible energético que se obtiene directa o indirectamente de recursos biológicos. La energía de biomasa que procede de la madera, residuos agrícolas y estiércol, continúa siendo la fuente principal de energía de las zonas en desarrollo. En algunos casos también es el recurso económico más importante, como en Brasil, donde la caña de azúcar se transforma en etanol, y en la provincia de Sichuan, en China, donde se obtiene gas a partir de estiércol. Existen varios proyectos de investigación que pretenden conseguir un desarrollo mayor de la energía de biomasa, sin embargo, la rivalidad económica que plantea con el petróleo es responsable de que dichos esfuerzos se hallen aún en una fase temprana de desarrollo. Es materia orgánica descompuesta

Residuos sólidos, eliminación de los materiales sólidos o semisólidos sin utilidad que generan las actividades humanas y animales. Se separan en cuatro categorías: residuos agrícolas, Energía solar y eólica
industriales, comerciales y domésticos. Los residuos comerciales y domésticos suelen ser materiales orgánicos, ya sean combustibles, como papel, madera y tela, o no combustibles, como metales, vidrio y cerámica. Los residuos industriales pueden ser cenizas procedentes de combustibles sólidos, escombros de la demolición de edificios, materias químicas, pinturas y escoria; los residuos agrícolas suelen ser estiércol de animales y restos de la cosecha.

Elaboración de fertilizantes

La elaboración de fertilizantes o abonos a partir de residuos sólidos consiste en la degradación de la materia orgánica por microorganismos aeróbicos.

Primero se clasifican los residuos para separar materiales con alguna otra utilidad y los que no pueden ser degradados, y se entierra el resto para favorecer el proceso de descomposición. El humus resultante contiene de un 1 a un 3% de nitrógeno, fósforo y potasio, según los materiales utilizados. Después de tres semanas el producto está preparado para mezclarlo con aditivos, empaquetarlo y venderlo.

Geotermia, ciencia relacionada con el calor interior de la Tierra. Su aplicación práctica principal es la localización de yacimientos naturales de agua caliente, fuente de la energía geotérmica, para su uso en generación de energía eléctrica, en calefacción o en procesos de secado industrial. El calor se produce entre la corteza y el manto superior de la Tierra, sobre todo por desintegración de elementos radiactivos. Esta energía geotérmica se transfiere a la superficie por difusión, por movimientos de convección en el magma (roca fundida) y por circulación de agua en las profundidades. Sus manifestaciones hidrotérmicas superficiales son, entre otras, los manantiales calientes, los géisers y las fumarolas. Los primeros han sido usados desde la antigüedad con propósitos terapéuticos y recreativos. Los colonos escandinavos en Islandia llevaban agua desde las fuentes calientes cercanas hasta sus viviendas a través de conductos de madera.

El vapor producido por líquidos calientes naturales en sistemas geotérmicos es una alternativa al que se obtiene en plantas de energía por quemado de materia fósil, por fisión nuclear o por otros medios. Las perforaciones modernas en los sistemas geotérmicos alcanzan reservas de agua y de vapor, calentados por magma mucho más profundo, que se encuentran hasta los 3.000 m bajo el nivel del mar. El vapor se purifica en la boca del pozo antes de ser transportado en tubos grandes y aislados hasta las turbinas. La energía térmica puede obtenerse también a partir de géisers y de grietas.

La energía geotérmica se desarrolló para su aprovechamiento como energía eléctrica en 1904, en Toscana (Italia), donde la producción continúa en la actualidad. Los fluidos geotérmicos se usan también como calefacción en Budapest (Hungría), en algunas zonas de París, en la ciudad de Reykjavík, en otras ciudades islandesas y en varias zonas de Estados Unidos.

Entre todos los procesos distintos que actúan sobre la superficie terrestre, la lluvia y los ríos son los agentes de erosión más vigorosos. Por el contrario, aunque la acción de las olas sobre una costa rocosa sea impresionante, el retroceso de las costas es en general muy lento. Las dunas del Sahara son también espectaculares, pero la arena no es más que una cubierta relativamente fina. Asimismo, las morrenas dejadas atrás por los glaciares continentales gigantes son sólo arañazos superficiales sobre los antiguos suelos. En general, sin intervención humana, los paisajes son estables.

La meteorización suele ser una combinación de tres tipos de procesos: mecánicos, como el crecimiento de hielo o de cristales de sal, o el calentamiento o enfriamiento térmicos; químicos, como en las disoluciones ácidas que tienden a disolver minerales como la calcita y el feldespato; y biológicos, como la acción de las raíces de plantas que generan energía mecánica y química. La erosión es la extracción, supresión y transporte de materia, disuelta o en forma de partículas.

8.1-AHORRO ENERGÉTICO EN LA VIVIENDA

Más o menos la mitad de la energía consumida en Europa occidental se destina a edificios. Con la tecnología moderna para ahorro de energía, el consumo puede llegar a reducirse un 20% en un periodo de cinco años. Se debe estimular la construcción de diseños con buen aislamiento, el uso eficaz de la energía en la iluminación, la instalación de sistemas de control de energía y la de aparatos modernos y eficaces para calefacción, aire acondicionado, cocinas y refrigeración. Las etiquetas en los aparatos con información sobre la eficacia de su funcionamiento ayudan a elegir el sistema más adecuado.

8.2-AHORRO ENERGÉTICO EN LA INDUSTRIA Y EL TRANSPORTE

El ahorro de electricidad puede conseguirse mediante sistemas avanzados de control de potencia, la instalación de motores eléctricos modernos para ventiladores, bombas, mecanismos de transmisión…, y la instalación de equipos de iluminación de alta eficacia; se debe evitar la penalización que supone el uso de energía en momentos de máximo coste, utilizando las tarifas reducidas para ahorrar dinero (aunque no necesariamente energía).

El rendimiento de las calderas y hornos puede mejorarse en gran medida mediante un ajuste y control cuidadosos de los niveles de combustión de aire en exceso. La recuperación del calor desechado a través de intercambiadores, bombas de calor y ruedas térmicas es un buen método para mejorar el ahorro energético. Las innovaciones en los sistemas de vapor y condensación pueden aportar también un ahorro sustancial.

La conservación de la energía sólo puede conseguirse si se introduce un plan de gestión de la energía con un seguimiento riguroso y metas de progreso. La motivación de la mano de obra es esencial y sólo es posible si existe un compromiso abierto al más alto nivel. La mejora en la conservación de la energía es un problema tanto psicológico como técnico y financiero.

El transporte es el sector más contaminante de todos, ocasionando más dióxido de carbono que la generación de electricidad o la destrucción de los bosques. En la actualidad hay en el mundo 500 millones de vehículos y en Europa occidental se calcula que su número se duplicará en el año 2020. En los países en desarrollo el crecimiento será incluso más rápido. A pesar de que el rendimiento de los motores de los vehículos se ha mejorado mucho mediante sistemas de control de la ignición y el uso de motores diesel, la tendencia sigue siendo la fabricación de vehículos con prestaciones muy superiores a las que permiten las carreteras. La congestión y la contaminación están estimulando la aparición de movimientos en favor de la tracción eléctrica y de la extensión del transporte público.

1.1-LA NECESIDAD DE ENERGIAS ALTERNATIVAS O RENOVABLES

La necesidad de las energías renovables habría surgido de todas formas, que hubiera salido un poco antes o que hubiera salido un poco después hubiese dado lo mismo. Mas tarde o mas temprano habría salido y habría seguido adelante.

Las energías renovables es un forma de obtener electricidad mas limpia y en algunos casos mas barata, o mas cara, según.

1.2-CONSECUENCIAS PARA EL MEDIO AMBIENTE DE LAS ENERGIAS ALTERNATIVAS

Una de las principales consecuencias para el medio ambiente es el deterioro y el consumo excesivo de sus bienes, al construir algo sobre la tierra ya la estas dañando, de esta forma nos daremos cuenta de las ciudades, plantas eléctricas,...

La tierra a este ritmo no aguantara mucho mas tiempo.

Mis conclusiones sobre este tema han sido:

  • Que la energía pronto se agotará

  • La energía nuclear puede sustituir al petróleo, pero en muy inestable y peligrosa.

  • El futuro esta inestable sin otras fuentes de energía.

  • La energía es algo imprescindible en la vida.




Descargar
Enviado por:El remitente no desea revelar su nombre
Idioma: castellano
País: España

Te va a interesar