Matemáticas
Análisis matemático con Maple
ANÁLISIS MATEMÁTICO II
Trabajo Práctico Nº2
Práctica Nº5
4.a - Dada ![]()
![]()
![]()
![]()
, graficar su imagen
> r[t]:=[3*cos(t^3),3*t^3,3*sin(t^3)],t=0..(2*Pi)^(1/3),u=0..1;
![]()
> with(plots):
> plot3d(r[t],axes=normal,numpoints=5000);

21.a - Calcular el vector gradiente de la siguiente expresión:
![]()
en ![]()
> f:=(x,y)->exp(x*y)*cos(x)*sin(y);
![]()
> with(linalg):
> simplify(grad(f(x,y),[x,y]));
![]()
> eval(%,[x=Pi/4,y=Pi]);

25 - Una carga puntual, de valor q, ubicada en el origen, produce un potencial V:
a - Encontrar la ley V=V(r)
> V:=r->k*q/(abs(r));
![]()
> V:=(x,y,z)->k*q/sqrt(x^2+y^2+z^2);
![]()
b - Verificar que V es solución de la ecuación de Laplace:
![]()
> with(linalg):
> Vxx:=diff(V(x,y,z),x$2);

> Vyy:=diff(V(x,y,z),y$2);

> Vzz:=diff(V(x,y,z),z$2);

> Laplace:=Vxx+Vyy+Vzz;

> simplify(Laplace);
![]()
Con esto queda comprobado que: ![]()
31 - Para el punto ![]()
, el diferencial de la variable, dr, y las funciones que siguen a continuación, calcule el diferencial dz y compare con el correspondiente incremento de la función:
![]()
![]()
![]()
Diferencial de la función:
> z:=(x,y)->ln(x^2+y^2);
![]()
> with(liesymm):
> setup(x,y);
![]()
> dz:=d(z(x,y));
![]()
> eval(dz,[x=1,y=0,d(x)=-0.1,d(y)=0.31]);
![]()
Incremento de la función:
> Delta:=(z,x,y,dx,dy)->z(x+dx,y+dy)-z(x,y);
![]()
> Delta(z,1,0,-0.1,0.31);
![]()
Práctica Nº6
3 - Dada la función compuesta z=ln sen![]()
, donde ![]()
, hallar z'=![]()
> z:=(x,y)->ln(sin(x/sqrt(y)));
![]()
> r:=t->[3*t^2,sqrt(t^2+1)];
![]()
> with(linalg):
> zr:=dotprod(grad(z(x,y),[x,y]),diff(r(t),t),orthogonal);

> factor(zr);

> eval(%,[x=3*t^2,y=sqrt(t^2+1)]);

42 - Siendo "![]()
" y "![]()
" funciones de ![]()
e ![]()
obtenga ![]()
en el sistema:![]()
![]()
> F1[1](x,y,u,v):=0;
> F1[2](x,y,u,v):=0;
![]()
![]()
> F1[1]:=(x,y,u,v)->u+x+y-v;
> F1[2]:=(x,y,u,v)->v*exp(u)+sin(x*v)-1;
![]()
![]()
> with(liesymm):
> setup(x,y,u,v);
![]()
> solve({d(F1[1](x,y,u,v))=0,d(F1[2](x,y,u,v))=0},{d(v),d(u)});

> collect(op([1,2],%),[d(x),d(y)]);
![]()
> u[y]:=eval(%/d(y),[d(x)=0]);
![]()
49 - Considerar que ![]()
e ![]()
son las variables independientes y que las demás variables quedan definidas en función de esas dos, a través del sistema que se indica a continuación. Obtener las derivadas parciales de primer orden de todas las demás variables dependientes del sistema.
![]()
![]()
![]()
> F[1](x,y,z,u,v):=0;
> F[2](x,y,z,u,v):=0;
> F[3](x,y,z,u,v):=0;
![]()
![]()
![]()
> F[1]:=(x,y,z,u,v)->a*cos(u)*cos(v)-x;
> F[2]:=(x,y,z,u,v)->b*sin(u)*cos(v)-y;
> F[3]:=(x,y,z,u,v)->c*sin(v)-z;
![]()
![]()
![]()
> with(liesymm):
> setup(x,y,z,u,v);
![]()
> dF:=solve({d(F[1](x,y,z,u,v))=0,d(F[2](x,y,z,u,v))=0,d(F[3](x,y,z,u,v))=0},{d(z),d(u),d(v)});

> dz:=collect(op([1,2],dF),[d(x),d(y)]);
![]()
> z[x]:=expand(eval(dz/d(x),[d(y)=0]));
![]()
> z[y]:=expand(eval(dz/d(y),[d(x)=0]));
![]()
> du:=collect(op([2,2],dF),[d(x),d(y)]);
![]()
> u[x]:=expand(eval(du/d(x),[d(y)=0]));
![]()
> u[y]:=expand(eval(du/d(y),[d(x)=0]));
![]()
> dv:=collect(op([3,2],dF),[d(x),d(y)]);
![]()
> v[x]:=expand(eval(dv/d(x),[d(y)=0]));
![]()
> v[y]:=expand(eval(dv/d(y),[d(x)=0]));
![]()
59 - Determine los puntos extremales y verifique si los mismos constituyen puntos de ensilladura, máximos o mínimos relativos: ![]()
> F:=(x,y)->x^2*y^2;
![]()
> with(linalg):
> G:=grad(F(x,y),[x,y]);
![]()
> solve({G[1]=0,G[2]=0},{x,y});
![]()
Combinando este resultado se obtiene:
> P[1]:=[0,0];
P[2]:=[0,y];
P[3]:=[x,0];
![]()
![]()
![]()
>MD2:=(f,x,y)->
matrix([[diff(f,`$`(x,2)),diff(f,x,y)],[diff(f,y,x),
diff(f,`$`(y,2))]]);

> eval(MD2(F(x,y),x,y),[y=0,x=x]);
![]()
> det(%);
![]()
> eval(MD2(F(x,y),x,y),[x=0,y=y]);
![]()
> det(%);
![]()
> eval(MD2(F(x,y),x,y),[x=0,y=0]);
![]()
> det(%);
![]()
Hay 3 extremos relativos, pero no se pueden determinar de esta manera, por lo tanto se procede a determinarlos en forma gráfica:
> with(plots):
> plot3d(F(x,y),x=-2..2,y=-2..2,view=-2..5,orientation=[-20,45],numpoints=2000,axes=normal);

Como se puede ver en la gráfica, los 3 extremos relativos encontrados son mínimos relativos, donde:
"(![]()
)¹(0,0) Þ ![]()
\ ![]()
es mínimo relativo
"(![]()
)¹(![]()
) Þ ![]()
\ ![]()
es mínimo relativo
"(![]()
)¹(![]()
) Þ ![]()
\ ![]()
es mínimo relativo
61 - Ídem al ejercicio anterior para: ![]()
> F:=(x,y)->x^2+y^2+2*x*y-x-y-5;
![]()
> with(linalg):
> G:=grad(F(x,y),[x,y]);
![]()
> solve({G[1]=0,G[2]=0},{x,y});
![]()
De este resultado se obtiene:
> P:=(x,-x+1/2);
![]()
> MD2:=(f,x,y)->matrix([[diff(f,`$`(x,2)),diff(f,x,y)],[diff(f,y,x),diff(f,`$`(y,2))]]);

> eval(MD2(F,x,y),[x=-y+1/2,y=y]);
![]()
> det(%);
![]()
Una vez más encontramos un extremo no determinable de esta manera, entonces se analiza la gráfica:
> plot3d(F(x,y),x=-10..10,y=-10..10,view=-6..5,orientation=[-110,60],numpoints=2000,axes=normal,style=patchcontour);

Se puede ver en la grafica que f(x,y) es constante a lo largo de toda una recta. Dicho valor constante es:
> simplify(F(P));
![]()
Se puede comprobar, completando cuadrados, que:
> F(x,y)=((x+y)-1/2)^2-21/4;
![]()
> F_1:=(x,y)->(x+y-1/2)^2-21/4;
![]()
> F_1(P);
![]()
Se puede ver a simple vista que si (![]()
)¹![]()
el primer miembro de la suma será mayor que cero (ya que está elevado al cuadrado).
\ ![]()
Þ P es mínimo relativo, donde P es el conjunto de puntos pertenecientes a la recta ![]()
Pág. 13 de 13
Descargar
| Enviado por: | Bruno Ezequiel García |
| Idioma: | castellano |
| País: | Argentina |
