Industria y Materiales
Acero
Aceros:
Los aceros son aleaciones de hierro-carbono, aptas para ser deformadas en frío y en caliente. Generalmente, el porcentaje de carbono no excede del 1,76%.
Estructura del acero
Las propiedades físicas de los aceros y su comportamiento a distintas temperaturas dependen sobre todo de la cantidad de carbono y de su distribución en el hierro. Antes del tratamiento térmico, la mayor parte de los aceros son una mezcla de tres sustancias: ferrita, perlita y cementita. La ferrita, blanda y dúctil, es hierro con pequeñas cantidades de carbono y otros elementos en disolución. La cementita, un compuesto de hierro con el 7% de carbono aproximadamente, es de gran dureza y muy quebradiza. La perlita es una profunda mezcla de ferrita y cementita, con una composición específica y una estructura característica, y sus propiedades físicas son intermedias entre las de sus dos componentes.
La resistencia y dureza de un acero que no ha sido tratado térmicamente depende de las proporciones de estos tres ingredientes. Cuanto mayor es el contenido en carbono de un acero, menor es la cantidad de ferrita y mayor la de perlita: cuando el acero tiene un 0,8% de carbono, está por completo compuesto de perlita. El acero con cantidades de carbono aún mayores es una mezcla de perlita y cementita.
Al elevarse la temperatura del acero, la ferrita y la perlita se transforman en una forma alotrópica de aleación de hierro y carbono conocida como austenita, que tiene la propiedad de disolver todo el carbono libre presente en el metal. Si el acero se enfría despacio, la austenita vuelve a convertirse en ferrita y perlita, pero si el enfriamiento es repentino la austenita se convierte en martensita, una modificación alotrópica de gran dureza similar a la ferrita pero con carbono en solución sólida.
Tratamiento térmico del acero
El proceso básico para endurecer el acero mediante tratamiento térmico consiste en calentar el metal hasta una temperatura a la que se forma austenita, generalmente entre los 750 y 850 ºC, y después enfriarlo con rapidez sumergiéndolo en agua o aceite. Estos tratamientos de endurecimiento, que forman martensita, crean grandes tensiones internas en el metal, que se eliminan mediante el temple o el recocido, que consiste en volver a calentar el acero hasta una temperatura menor. El temple reduce la dureza y resistencia y aumenta la ductilidad y la tenacidad.
El objetivo fundamental del proceso de tratamiento térmico es controlar la cantidad, tamaño, forma y distribución de las partículas de cementita contenidas en la ferrita, que a su vez determinan las propiedades físicas del acero.
Hay muchas variaciones del proceso básico. Los ingenieros metalúrgicos han descubierto que el cambio de austenita a martensita se produce en la última fase del enfriamiento, y que la transformación se ve acompañada de un cambio de volumen que puede agrietar el metal si el enfriamiento es demasiado rápido.
Se han desarrollado tres procesos relativamente nuevos para evitar el agrietamiento. En el templado prolongado, el acero se retira del baño de enfriamiento cuando ha alcanzado la temperatura en la que empieza a formarse la martensita, y a continuación se enfría despacio en el aire. En el martemplado, el acero se retira del baño en el mismo momento que el templado prolongado y se coloca en un baño de temperatura constante hasta que alcanza una temperatura uniforme en toda su sección transversal. Después se deja enfriar el acero en aire a lo largo del rango de temperaturas de formación de la martensita, que en la mayoría de los aceros va desde unos 300 ºC hasta la temperatura ambiente. En el austemplado, el acero se enfría en un baño de metal o sal mantenido de forma constante a la temperatura en que se produce el cambio estructural deseado, y se conserva en ese baño hasta que el cambio es completo, antes de pasar al enfriado final.
Hay también otros métodos de tratamiento térmico para endurecer el acero. En la cementación, las superficies de las piezas de acero terminadas se endurecen al calentarlas con compuestos de carbono o nitrógeno. Estos compuestos reaccionan con el acero y aumentan su contenido de carbono o forman nitruros en su capa superficial.
En la carburización la pieza se calienta cuando se mantiene rodeada de carbón vegetal, coque o de gases de carbono como metano o monóxido de carbono. La cianurización consiste en endurecer el metal en un baño de sales de cianuro fundidas para formar carburos y nitruros. La nitrurización se emplea para endurecer aceros de composición especial mediante su calentamiento en amoníaco gaseoso para formar nitruros de aleación.
Ventajas y desventajas del acero como material de construcción:
Ventajas del acero como material estructural:
-
Alta resistencia.- La alta resistencia del acero por unidad de peso implica que será poco el peso de las estructuras, esto es de gran importancia en puentes de grandes claros.
-
Uniformidad.- Las propiedades del acero no cambian apreciablemente con el tiempo como es el caso de las estructuras de concreto reforzado.
-
Durabilidad.- Si el mantenimiento de las estructuras de acero es adecuado duraran indefinidamente.
-
Ductilidad.- La ductilidad es la propiedad que tiene un material de soportar grandes deformaciones sin fallar bajo altos esfuerzos de tensión. La naturaleza dúctil de los aceros estructurales comunes les permite fluir localmente, evitando así fallas prematuras.
-
Tenacidad.- Los aceros estructurales son tenaces, es decir, poseen resistencia y ductilidad. La propiedad de un material para absorber energía en grandes cantidades se denomina tenacidad.
-
Otras ventajas importantes del acero estructural son:
A) Gran facilidad para unir diversos miembros por medio de varios tipos de conectores como son la soldadura, los tornillos y los remaches.
B) Posibilidad de prefabricar los miembros de una estructura.
C) Rapidez de montaje.
D) Gran capacidad de laminarse y en gran cantidad de tamaños y formas.
E) Resistencia a la fatiga.
F) Posible rehuso después de desmontar una estructura.
Desventajas del acero como material estructural:
-
Costo de mantenimiento.- La mayor parte de los aceros son susceptibles a la corrosión al estar expuestos al agua y al aire y, por consiguiente, deben pintarse periódicamente.
-
Costo de la protección contra el fuego.- Aunque algunos miembros estructurales son incombustibles, sus resistencias se reducen considerablemente durante los incendios.
-
Susceptibilidad al pandeo.- Entre más largos y esbeltos sean los miembros a compresión, mayor es el peligro de pandeo. Como se indico previamente, el acero tiene una alta resistencia por unidad de peso, pero al utilizarse como columnas no resulta muy económico ya que debe usarse bastante material, solo para hacer más rígidas las columnas contra el posible pandeo.
NOTA: El acero estructural puede laminarse en forma económica en una gran variedad de formas y tamaños sin cambios apreciables en sus propiedades físicas. Generalmente los miembros estructurales más convenientes son aquellos con grandes momentos de inercia en relación con sus áreas. Los perfiles I, T y L tienen esta propiedad.
Características de los aceros:
En este proyecto se van a emplear una serie de materiales dependiendo de la temperatura a la que trabaja el aparato al que va destinado ese material. Tenemos tres aceros a elegir; el acero al carbono que se empleará cuando trabajemos a temperaturas superiores de -28ºC, el acero inoxidable cuando trabajemos a temperaturas entre -28ºC y -45ºC y, por último, el acero con una aleación de 3,5% de níquel que se empleará a temperaturas inferiores a -45ºC.
A continuación se expondrán las características de cada uno de estos aceros.
Aceros al carbono:
Más del 90% de todos los aceros son aceros al carbono. Están formados principalmente por hierro y carbono. Estos aceros contienen diversas cantidades de carbono y menos del 1,65% de manganeso, el 0,60% de silicio y el 0,60% de cobre. Entre los productos fabricados con aceros al carbono figuran máquinas, carrocerías de automóvil, la mayor parte de las estructuras de construcción de acero, cascos de buques, somieres y horquillas.
Aceros inoxidables:
Los aceros inoxidables contienen cromo, níquel y otros elementos de aleación, que los mantienen brillantes y resistentes a al herrumbre y oxidación a pesar de la acción de la humedad o de ácidos y gases corrosivos. Algunos aceros inoxidables son muy duros; otros son muy resistentes y mantienen esa resistencia durante largos periodos a temperaturas extremas. Se emplea para las tuberías y tanques de refinerías de petróleo o plantas químicas, para los fuselajes de aviones o para cápsulas espaciales.
En la industria química y petroquímica, los aceros inoxidables ofrecen elevada resistencia a la corrosión y excelentes propiedades mecánicas así como un bajo costo de mantenimiento.
Los aceros inoxidables son más resistentes a la corrosión y a las manchas de los que son los aceros al carbono y de baja aleación. Este tipo de resistencia superior a la corrosión se produce por el agregado del elemento cromo a las aleaciones de hierro y carbono.
La mínima cantidad de cromo necesaria para conferir esta resistencia superior a la corrosión depende de los agentes de corrosión.
Las principales ventajas del acero inoxidable son:
-
Alta resistencia a la corrosión.
-
Alta resistencia mecánica.
-
Apariencia y propiedades higiénicas.
-
Resistencia a altas y bajas temperaturas.
-
Buenas propiedades de soldabilidad, mecanizado, corte, doblado y plegado.
-
Bajo costo de mantenimiento.
-
Reciclable.
-
Como consecuencia de diferentes elementos agregados como níquel, cromo, molibdeno, titanio, niobio y otros, producen distintos tipos de acero inoxidable, cada uno con diferentes propiedades.
Descargar
Enviado por: | El remitente no desea revelar su nombre |
Idioma: | castellano |
País: | España |