Electrónica, Electricidad y Sonido


Osciloscopio


Tabla de contenido

¿Qué es un osciloscopio?

El osciloscopio es básicamente un dispositivo de visualización gráfica que muestra señales eléctricas variables en el tiempo. El eje vertical, a partir de ahora denominado Y, representa el voltaje; mientras que el eje horizontal, denominado X, representa el tiempo.

¿Qué podemos hacer con un osciloscopio?.

básicamente esto:

  • Determinar directamente el periodo y el voltaje de una señal.

  • Determinar indirectamente la frecuencia de una señal.

  • Determinar que parte de la señal es DC y cual AC.

  • Localizar averías en un circuito.

  • Medir la fase entre dos señales.

  • Determinar que parte de la señal es ruido y como varia este en el tiempo.

Los osciloscopios son de los instrumentos más versátiles que existen y lo utilizan desde técnicos de reparación de televisores a médicos. Un osciloscopio puede medir un gran número de fenómenos, provisto del transductor adecuado (un elemento que convierte una magnitud física en señal eléctrica) será capaz de darnos el valor de una presión, ritmo cardiaco, potencia de sonido, nivel de vibraciones en un coche, etc.

¿Qué tipos de osciloscopios existen?

Los equipos electrónicos se dividen en dos tipos: Analógicos y Digitales. Los primeros trabajan con variables continuas mientras que los segundos lo hacen con variables discretas. Por ejemplo un tocadiscos es un equipo analógico y un Compact Disc es un equipo digital.

Los Osciloscopios también pueden ser analógicos ó digitales. Los primeros trabajan directamente con la señal aplicada, está una vez amplificada desvía un haz de electrones en sentido vertical proporcionalmente a su valor. En contraste los osciloscopios digitales utilizan previamente un conversor analógico-digital (A/D) para almacenar digitalmente la señal de entrada, reconstruyendo posteriormente esta información en la pantalla.

Ambos tipos tienen sus ventajas e inconvenientes. Los analógicos son preferibles cuando es prioritario visualizar variaciones rápidas de la señal de entrada en tiempo real. Los osciloscopios digitales se utilizan cuando se desea visualizar y estudiar eventos no repetitivos (picos de tensión que se producen aleatoriamente).

¿Qué controles posee un osciloscopio típico?

A primera vista un osciloscopio se parece a una pequeña televisión portátil, salvo una rejilla que ocupa la pantalla y el mayor número de controles que posee.
En la siguiente figura se representan estos controles distribuidos en cinco secciones:

Osciloscopio

** Vertical. ** Horizontal. ** Disparo. ** Control de la visualización ** Conectores.

¿Cómo funciona un osciloscopio?

El funcionamiento del osciloscopio está basado en la posibilidad de desviar un haz de electrones por medio de la creación de campos eléctricos y magnéticos.

En la mayoría de osciloscopios, la desviación electrónica, llamada deflexión, se consigue mediante campos eléctricos. Ello constituye la deflexión electrostática.

Osciloscopio

Una minoría de aparatos de osciloscopía especializados en la visualización de curvas de respuesta, emplean el sistema de deflexión electromagnética, igual al usado en televisión.

Este último tipo de osciloscopio carece de control del tiempo de exploración.

El proceso de deflexión del haz electrónico se lleva a cabo en el vacío creado en el interior del llamado tubo de rayos catódicos (TRC). En la pantalla de éste es donde se visualiza la información aplicada (dibujo 1a).

El tubo de rayos catódicos de deflexión electroestática está dotado con dos pares de placas de deflexión horizontal y vertical respectivamente, que debidamente controladas hacen posible la representación sobre la pantalla de los fenómenos que se desean analizar.

Esta representación se puede considerar inscrita sobre unas coordenadas cartesianas en las que los ejes horizontal y vertical representan tiempo y tensión respectivamente (dibujo 1b). La escala de cada uno de los ejes cartesianos grabados en la pantalla, puede ser cambiada de modo independiente uno de otro, a fin de dotar a la señal de la representación más adecuada para su medida y análisis.

Las dimensiones de la pantalla del TRC están actualmente normalizadas en la mayoría de instrumentos, a 10 cm en el eje horizontal (X) por 8 cm en el eje vertical (Y). Sobre la pantalla se encuentran grabadas divisiones de 1 cm cuadrado, bien directamente sobre el TRC o sobre una pieza superpuesta a él, en la que se encuentra impresa una retícula de 80 cm cuadrados. En esta retícula es donde se realiza la representación de la señal aplicada al osciloscopio, tal como se ve en el dibujo 1c.

Principio de funcionamiento

El osciloscopio, como aparato muy empleado que es, se encuentra representado en el mercado de instrumentos bajo muchas formas distintas, no sólo en cuanto al aspecto puramente físico sino en cuanto a sus características internas y por tanto a sus prestaciones y posibilidades de aplicación de las mismas.

No obstante, a pesar de las posibles diferencias existentes, todos los osciloscopios presentan unos principios de funcionamiento comunes. Los de uso más generalizado son los que podríamos definir como "osciloscopios básicos". Este tipo es el que utilizará para la mayoría de descripciones que se van a realizar, mencionando posteriormente las modalidades de uso más específico.

En el dibujo 1d se ve el esquema de bloques de un osciloscopio de tipo básico. Según se observa en este dibujo, los circuitos fundamentales son los siguientes:

Osciloscopio

  • Atenuador de entrada vertical

  • Amplificador de vertical

  • Etapa de deflexión vertical

  • Amplificador de la muestra de disparo (trigger)

  • Selector del modo de disparo (interior o exterior)

  • Amplificador del impulso de disparo

  • Base de tiempos

  • Amplificador del impulso de borrado

  • Etapa de deflexión horizontal

  • Tubo de rayos catódicos

  • Circuito de alimentación

Medidas con el Osciloscopio

 

Pretender describir todas y cada una de las posibilidades de un instrumento tan polifacético como éste, resulta una tarea del todo imposible. Existen sin embargo, un determinado número de aplicaciones que pueden considerarse como las más usuales y que serán descritas aquí, insisto en que los siguientes ejemplos no persiguen, ni mucho menos, ser totalmente completos, sino sólo una muestra de las posibles aplicaciones.

 

  • Medida de tensiones

  • Medida de corrientes

  • Medida de tiempos

  • Medida de frecuencia

  • Medida de fa

Medida de Tensiones

En cada una de las posiciones del atenuador vertical, se puede leer directamente la tensión necesaria para desviar el trazo un centímetro, en sentido vertical. Esto nos permite realizar mediciones de tensión sobre la pantalla, tanto de continua cono de alterna. En ambos casos, se situará el conmutador de acoplamiento en la posición adecuada. La medida de una tensión alterna se realizará contando los centímetros o cuadros de la retícula que ocupa la señal sobre la pantalla, multiplicándolos por el factor de conversión seleccionado con el conmutador de vertical, teniendo en cuenta que cuanto mayor sea el espacio ocupado por la señal, sobre la pantalla, más fiable será la medida realizada.

Al realizar una medida de tensión continua, o bien su componente dentro de una forma de onda, lo que mediremos será el desplazamiento vertical que experimenta la deflexión a partir de una determinada referencia. Este desplazamiento nos indicará además, la polaridad de la tensión continua medida, según sea hacia la parte superior de la retícula (tensión positiva) o hacia la parte inferior (tensión negativa).

Medida de corrientes

La intensidad de corriente que circula por un determinado circuito, es un parámetro que no resulta posible medirlo directamente con el empleo del osciloscopio. Como ya sabéis, éste sólo permite la medida de tensiones en el eje vertical "Y", y de tiempos en eje horizontal "X". Sin embargo, lo que sí se puede apreciar es la forma de onda de la corriente que circula por una determinada rama del circuito mediante el procedimiento de añadir en serie con ésta, una resistencia de pequeño valor (a fin de no alterar las condiciones del circuito original), y proceder a visualizar la forma de onda de tensión en bornes de la resistencia añadida.

Si se desea el valor de la corriente que circula, bastará con aplicar la ley de Ohm, dividiendo el valor de la tensión media (valor de pico a pico), por el valor óhmico de la resistencia añadida, obteniendo el valor pico a pico de la corriente que circula por dicha rama.

Medida de tiempos

La distancia respecto al tiempo, entre dos puntos determinados, se puede calcular a partir de la distancia física en centímetros existente entre dichos puntos y multiplicándola por el factor indicado en el conmutador de la base de tiempos.

Medida de tiempos de subida

Cuando interesa averiguar el tiempo de subida de una determinada forma de onda, por ejemplo de una onda cuadrada, deberá tenerse en cuenta el amplificar al máximo la señal en sentido horizontal, a fin de conseguir la máxima definición sobre la pantalla. Una vez realizado esto, el intervalo de medida que se tomará, estará comprendido entre el 10 y el 90% de la señal a medir

Medida de frecuencia

La frecuencia propia de una señal determinada se puede medir sobre un osciloscopio con arreglo a dos métodos distintos:

Para entender el funcionamiento de los controles que posee un osciloscopio es necesario detenerse un poco en los procesos internos llevados a cabo por este aparato. Empezaremos por el tipo analógico ya que es el más sencillo.

Osciloscopios analógicos

Cuando se conecta la sonda a un circuito, la señal atraviesa esta última y se dirige a la sección vertical. Dependiendo de donde situemos el mando del amplificador vertical atenuaremos la señal ó la amplificaremos. En la salida de este bloque ya se dispone de la suficiente señal para atacar las placas de deflexión verticales (que naturalmente están en posición horizontal) y que son las encargadas de desviar el haz de electrones, que surge del cátodo e impacta en la capa fluorescente del interior de la pantalla, en sentido vertical. Hacia arriba si la tensión es positiva con respecto al punto de referencia (GND) ó hacia abajo si es negativa.

La señal también atraviesa la sección de disparo para de esta forma iniciar el barrido horizontal (este es el encargado de mover el haz de electrones desde la parte izquierda de la pantalla a la parte derecha en un determinado tiempo). El trazado (recorrido de izquierda a derecha) se consigue aplicando la parte ascendente de un diente de sierra a las placas de deflexión horizontal (las que están en posición vertical), y puede ser regulable en tiempo actuando sobre el mando TIME-BASE. El retrazado (recorrido de derecha a izquierda) se realiza de forma mucho más rápida con la parte descendente del mismo diente de sierra.

De esta forma la acción combinada del trazado horizontal y de la deflexión vertical traza la gráfica de la señal en la pantalla. La sección de disparo es necesaria para estabilizar las señales repetitivas (se asegura que el trazado comience en el mismo punto de la señal repetitiva). En la siguiente figura puede observarse la misma señal en tres ajustes de disparo diferentes: en el primero disparada en flanco ascendente, en el segundo sin disparo y en el tercero disparada en flanco descendente.

Osciloscopio

Osciloscopio

Osciloscopio

Como conclusión para utilizar de forma correcta un osciloscopio analógico necesitamos realizar tres ajuste básicos:

  • La atenuación ó amplificación que necesita la señal. Utilizar el mando AMPL. para ajustar la amplitud de la señal antes de que sea aplicada a las placas de deflexión vertical. Conviene que la señal ocupe una parte importante de la pantalla sin llegar a sobrepasar los límites.

  • La base de tiempos. Utilizar el mando TIMEBASE para ajustar lo que representa en tiempo una división en horizontal de la pantalla. Para señales repetitivas es conveniente que en la pantalla se puedan observar aproximadamente un par de ciclos.

  • Disparo de la señal. Utilizar los mandos TRIGGER LEVEL (nivel de disparo) y TRIGGER SELECTOR (tipo de disparo) para estabilizar lo mejor posible señales repetitivas.

Por supuesto, también deben ajustarse los controles que afectan a la visualización: FOCUS (enfoque), INTENS. (Intensidad) nunca excesiva, Y-POS (posición vertical del haz) y X-POS (posición horizontal del haz).

Osciloscopios digitales

Los osciloscopios digitales poseen además de las secciones explicadas anteriormente un sistema adicional de proceso de datos que permite almacenar y visualizar la señal.

Osciloscopio

Cuando se conecta la sonda de un osciloscopio digital a un circuito, la sección vertical ajusta la amplitud de la señal de la misma forma que lo hacia el osciloscopio analógico.

El conversor analógico-digital del sistema de adquisición de datos muestrea la señal a intervalos de tiempo determinados y convierte la señal de voltaje continua en una serie de valores digitales llamados muestras. En la sección horizontal una señal de reloj determina cuando el conversor A/D toma una muestra. La velocidad de este reloj se denomina velocidad de muestreo y se mide en muestras por segundo.

Osciloscopio

Los valores digitales muestreados se almacenan en una memoria como puntos de señal. El número de los puntos de señal utilizados para reconstruir la señal en pantalla se denomina registro. La sección de disparo determina el comienzo y el final de los puntos de señal en el registro. La sección de visualización recibe estos puntos del registro, una vez almacenados en la memoria, para presentar en pantalla la señal.

Dependiendo de las capacidades del osciloscopio se pueden tener procesos adicionales sobre los puntos muestreados, incluso se puede disponer de un predisparo, para observar procesos que tengan lugar antes del disparo. Fundamentalmente, un osciloscopio digital se maneja de una forma similar a uno analógico, para poder tomar las medidas se necesita ajustar el mando AMPL.,el mando TIMEBASE así como los mandos que intervienen en el disparo.

Métodos de muestreo

Se trata de explicar como se las arreglan los osciloscopios digitales para reunir los puntos de muestreo. Para señales de lenta variación, los osciloscopios digitales pueden perfectamente reunir más puntos de los necesarios para reconstruir posteriormente la señal en la pantalla. No obstante, para señales rápidas (como de rápidas dependerá de la máxima velocidad de muestreo de nuestro aparato) el osciloscopio no puede recoger muestras suficientes y debe recurrir a una de estas dos técnicas:

  • Interpolación, es decir, estimar un punto intermedio de la señal basándose en el punto anterior y posterior.

  • Muestreo en tiempo equivalente. Si la señal es repetitiva es posible muestrear durante unos cuantos ciclos en diferentes partes de la señal para después reconstruir la señal completa.

Muestreo en tiempo real con Interpolación

El método standard de muestreo en los osciloscopios digitales es el muestreo en tiempo real: El osciloscopio reúne los suficientes puntos como para reconstruir la señal. Para señales no repetitivas ó la parte transitoria de una señal es el único método válido de muestreo.

Los osciloscopios utilizan la interpolación para poder visualizar señales que son más rápidas que su velocidad de muestreo. Existen básicamente dos tipos de interpolación:

Lineal: Simplemente conecta los puntos muestreados con líneas.
Senoidal: Conecta los puntos muestreados con curvas según un proceso matemático, de esta forma los puntos intermedios se calculan para rellenar los espacios entre puntos reales de muestreo. Usando este proceso es posible visualizar señales con gran precisión disponiendo de relativamente pocos puntos de muestreo.

Osciloscopio

Muestreo en tiempo equivalente

Algunos osciloscopios digitales utilizan este tipo de muestreo. Se trata de reconstruir una señal repetitiva capturando una pequeña parte de la señal en cada ciclo. Existen dos tipos básicos: Muestreo secuencial- Los puntos aparecen de izquierda a derecha en secuencia para conformar la señal. Muestreo aleatorio- Los puntos aparecen aleatoriamente para formar la señal

Osciloscopio

¿Qué parámetros influyen en la calidad de un osciloscopio?

Los términos definidos en esta sección nos permitirán comparar diferentes modelos de osciloscopio disponibles en el mercado.

Ancho de Banda

Especifica el rango de frecuencias en las que el osciloscopio puede medir con precisión. Por convenio el ancho de banda se calcula desde 0Hz (continua) hasta la frecuencia a la cual una señal de tipo senoidal se visualiza a un 70.7% del valor aplicado a la entrada (lo que corresponde a una atenuación de 3dB).

Tiempo de subida

Es otro de los parámetros que nos dará, junto con el anterior, la máxima frecuencia de utilización del osciloscopio. Es un parámetro muy importante si se desea medir con fiabilidad pulsos y flancos (recordar que este tipo de señales poseen transiciones entre niveles de tensión muy rápidas). Un osciloscopio no puede visualizar pulsos con tiempos de subida más rápidos que el suyo propio.

Sensibilidad vertical

Indica la facilidad del osciloscopio para amplificar señales débiles. Se suele proporcionar en mV por división vertical, normalmente es del orden de 5 mV/div (llegando hasta 2 mV/div).

Velocidad

Para osciloscopios analógicos esta especificación indica la velocidad máxima del barrido horizontal, lo que nos permitirá observar sucesos más rápidos. Suele ser del orden de nanosegundos por división horizontal.

Exactitud en la ganancia

Indica la precisión con la cual el sistema vertical del osciloscopio amplifica ó atenúa la señal. Se proporciona normalmente en porcentaje máximo de error.

Exactitud de la base de tiempos

Indica la precisión en la base de tiempos del sistema horizontal del osciloscopio para visualizar el tiempo. También se suele dar en porcentaje de error máximo.

Velocidad de muestreo

En los osciloscopios digitales indica cuantas muestras por segundo es capaz de tomar el sistema de adquisición de datos (específicamente el conversor A/D). En los osciloscopios de calidad se llega a velocidades de muestreo de Megamuestras/sg. Una velocidad de muestreo grande es importante para poder visualizar pequeños periodos de tiempo. En el otro extremo de la escala, también se necesita velocidades de muestreo bajas para poder observar señales de variación lenta. Generalmente la velocidad de muestreo cambia al actuar sobre el mando TIMEBASE para mantener constante el número de puntos que se almacenaran para representar la forma de onda.

Resolución vertical

Se mide en bits y es un parámetro que nos da la resolución del conversor A/D del osciloscopio digital. Nos indica con que precisión se convierten las señales de entrada en valores digitales almacenados en la memoria. Técnicas de cálculo pueden aumentar la resolución efectiva del osciloscopio.

Longitud del registro

Indica cuantos puntos se memorizan en un registro para la reconstrucción de la forma de onda. Algunos osciloscopios permiten variar, dentro de ciertos límites, este parámetro. La máxima longitud del registro depende del tamaño de la memoria de que disponga el osciloscopio. Una longitud del registro grande permite realizar zooms sobre detalles en la forma de onda de forma muy rápida (los datos ya han sido almacenados), sin embargo esta ventaja es a costa de consumir más tiempo en muestrear la señal completa.

EL OSCILOSCOPIO :Puesta en funcionamiento

Poner a tierra

Una buena conexión a tierra es muy importante para realizar medidas con un osciloscopio.

Colocar a tierra el Osciloscopio

Por seguridad es obligatorio colocar a tierra el osciloscopio. Si se produce un contacto entre un alto voltaje y la carcasa de un osciloscopio no puesto a tierra, cualquier parte de la carcasa, incluidos los mandos, puede producirle un peligroso shock. Mientras que un osciloscopio bien colocado a tierra, la corriente, que en el anterior caso te atravesaría, se desvía a la conexión de tierra.

Para conectar a tierra un osciloscopio se necesita unir el chasis del osciloscopio con el punto de referencia neutro de tensión (comúnmente llamado tierra). Esto se consigue empleando cables de alimentación con tres conductores (dos para la alimentación y uno para la toma de tierra).

El osciloscopio necesita, por otra parte, compartir la misma masa con todos los circuitos bajo prueba a los que se conecta. Algunos osciloscopios pueden funcionar a diferentes tensiones de red y es muy importante asegurarse que esta ajustado a la misma de la que disponemos en las tomas de tensión.

Osciloscopio

Ponerse a tierra uno mismo

Si se trabaja en circuitos integrados (ICs), especialmente del tipo CMOS, es necesario colocarse a tierra uno mismo. Esto es debido a que ciertas partes de estos circuitos integrados son susceptibles de estropearse con la tensión estática que almacena nuestro propio cuerpo. Para resolver este problema se puede emplear una correa conductora que se conectará debidamente a tierra, descargando la electricidad estática que posea su cuerpo.

Osciloscopio

Ajuste inicial de los controles

Después de conectar el osciloscopio a la toma de red y de alimentarlo pulsando en el interruptor de encendido:

Osciloscopio



Es necesario familiarizarse con el panel frontal del osciloscopio. Todos los osciloscopios disponen de tres secciones básicas que llamaremos: Vertical, Horizontal, y Disparo. Dependiendo del tipo de osciloscopio empleado en particular, podemos disponer de otras secciones.

Existen unos conectores BNC, donde se colocan las sondas de medida.

Osciloscopio


La mayoría de los osciloscopios actuales disponen de dos canales etiquetados normalmente como I y II (ó A y B). El disponer de dos canales nos permite comparar señales de forma muy cómoda.

Algunos osciloscopios avanzados poseen un interruptor etiquetado como AUTOSET ó PRESET que ajustan los controles en un solo paso para ajustar perfectamente la señal a la pantalla. Si tu osciloscopio no posee esta característica, es importante ajustar los diferentes controles del aparato a su posición estándar antes de proceder a medir.

Estos son los pasos más recomendables:

  • Ajustar el osciloscopio para visualizar el canal I. (Al mismo tiempo se colocará como canal de disparo el I).

  • Osciloscopio

    • Ajustar a una posición intermedia la escala voltios / división del canal I (por ejemplo 1v/cm).

    • Osciloscopio

      • Colocar en posición calibrada el mando variable de voltios / división (potenciómetro central).

      • Osciloscopio

        • Desactivar cualquier tipo de multiplicadores verticales.

        • Colocar el conmutador de entrada para el canal I en acoplamiento DC.

        • Osciloscopio

          • Colocar el modo de disparo en automático.

          • Osciloscopio

            • Desactivar el disparo retardado al mínimo ó desactivado.

            • Situar el control de intensidad al mínimo que permita apreciar el trazo en la pantalla, y el trazo de focus ajustado para una visualización lo más nítida posible (generalmente los mandos quedaran con la señalización cercana a la posición vertical).

            • Osciloscopio

              Sondas de medida

              Con los pasos detallados anteriormente, ya estas en condiciones de conectar la sonda de medida al conector de entrada del canal I. Es muy importante utilizar las sondas diseñadas para trabajar específicamente con el osciloscopio. Una sonda no es ,ni muco menos, un cable con una pinza, sino que es un conector específicamente diseñado para evitar ruidos que puedan perturbar la medida.

              Además, las sondas se construyen para que tengan un efecto mínimo sobre el circuito de medida. Esta facultad de las sondas recibe el nombre de efecto de carga, para minimizarla se utiliza un atenuador pasivo, generalmente de x10.

              Osciloscopio


              Este tipo de sonda se proporciona generalmente con el osciloscopio y es una excelente sonda de utilización general. Para otros tipos de medidas se utilizan sondas especiales, como pueden ser las sondas de corriente ó las activas.

              Sondas pasivas

              La mayoría de las sondas pasivas están marcadas con un factor de atenuación, normalmente 10X ó 100X. Por convenio los factores de atenuación aparecen con el signo X detrás del factor de división. En contraste los factores de amplificación aparecen con el signo X delante (X10 ó X100).

              La sonda más utilizada posiblemente sea la 10X, reduciendo la amplitud de la señal en un factor de 10. Su utilización se extiende a partir de frecuencias superiores a 5 Khz. y con niveles de señal superiores a 10 mV. La sonda 1X es similar a la anterior pero introduce más carga en el circuito de prueba, pero puede medir señales con menor nivel. Por comodidad de uso se han introducido sondas especiales con un conmutador que permite una utilización 1X ó 10X. Cuando se utilicen este tipo de sondas hay que asegurarse de la posición de este conmutador antes de realizar una medida.

              Osciloscopio

              Compensación de la sonda

              Antes de utilizar una sonda atenuadora 10X es necesario realizar un ajuste en frecuencia para el osciloscopio en particular sobre el que se vaya a trabajar. Este ajuste se denomina compensación de la sonda y consta de los siguientes pasos.

              • Conectar la sonda a la entrada del canal I.

              • Conectar la punta de la sonda al punto de señal de compensación (La mayoría de los osciloscopios disponen de una toma para ajustar las sondas, en caso contrario será necesario utilizar un generador de onda cuadrada).

              • Osciloscopio

                • Conectar la pinza de cocodrilo de la sonda a masa.

                • Observar la señal cuadrada de referencia en la pantalla.

                • Con el destornillador de ajuste, actuar sobre el condensador de ajuste hasta observar una señal cuadrada perfecta.

                Osciloscopio

                Sondas activas

                Proporcionan una amplificación antes de aplicar la señal a la entrada del osciloscopio. Pueden ser necesarias en circuitos con una cargabilidad de salida muy baja. Este tipo de sondas necesitan para operar una fuente de alimentación.

                Sondas de corriente

                Posibilitan la medida directa de las corrientes en un circuito. Las hay para medida de corriente alterna y continua. Poseen una pinza que abarca el cable a través del cual se desea medir la corriente. Al no situarse en serie con el circuito causan muy poca interferencia en él.

                Sistema de visualización:    Intensidad

                Se trata de un potenciómetro que ajusta el brillo de la señal en la pantalla. Este mando actúa sobre la rejilla más cercana al cátodo del CRT (G1), controlando el número de electrones emitidos por este.

                En un osciloscopio analógico si se aumenta la velocidad de barrido es necesario aumentar el nivel de intensidad. Por otra parte, si se desconecta el barrido horizontal es necesario reducir la intensidad del haz al mínimo (para evitar que el bombardeo concentrado de electrones sobre la parte interior de la pantalla deteriore la capa fluorescente que la recubre).

                Osciloscopio

                Sistema de visualización:    Enfoque

                 Se trata de un potenciómetro que ajusta la nitidez del haz sobre la pantalla. Este mando actúa sobre las rejillas intermedias del CRT (G2 y G4) controlando la finura del haz de electrones. Se retocará dicho mando para una visualización lo más precisa posible. Los osciloscopios digitales no necesitan este control.

                Osciloscopio



                Sistema de visualización:    Rotación del haz

                Resistencia ajustable actuando sobre una bobina y que nos permite alinear el haz con el eje horizontal de la pantalla. Campos magnéticos intensos cercanos al osciloscopio pueden afectar a la orientación del haz. La posición del osciloscopio con respecto al campo magnético terrestre también puede afectar. Los osciloscopios digitales no necesitan de este control. Se ajustará dicha resistencia, con el mando de acoplamiento de la señal de entrada en posición GND, hasta conseguir que el haz esté perfectamente horizontal.

                Osciloscopio

                Sistema vertical:    Posición

                Este control consta de un potenciómetro que permite mover verticalmente la forma de onda hasta el punto exacto que se desee. Cuando se está trabajando con una sola señal el punto normalmente elegido suele ser el centro de la pantalla.

                Osciloscopio




                Sistema vertical:    Conmutador

                Se trata de un conmutador con un gran número de posiciones, cada una de las cuales, representa el factor de escala empleado por el sistema vertical. Por ejemplo si el mando esta en la posición 2 voltios/div significa que cada una de las divisiones verticales de la pantalla (aproximadamente de un 1 cm.) representan 2 voltios. Las divisiones más pequeñas representaran una quinta parte de este valor, o sea, 0.4 voltios.

                La máxima tensión que se puede visualizar con el osciloscopio presentado y con una sonda de 10X será entonces: 10 (factor de división de la sonda) x 20 voltios/div (máxima escala) x 8 divisiones verticales = 1600 voltios. En la pantalla se representa una señal de 1Vpp tal como la veríamos en diferentes posiciones del conmutador.

                Osciloscopio

                Sistema vertical:    Mando Variable

                Se trata de un potenciómetro situado de forma concéntrica al conmutador del amplificador vertical y podemos considerarlo como una especie de lupa del sistema vertical.

                        Para realizar medidas es necesario colocarlo en su posición calibrada.

                Osciloscopio




                Sistema vertical:    Acoplamiento de la entrada

                Se trata de un conmutador de tres posiciones que conecta eléctricamente a la entrada del osciloscopio la señal exterior.

                El acoplamiento DC deja pasar la señal tal como viene del circuito exterior (es la señal real).El acoplamiento AC bloquea mediante un condensador la componente continua que posea la señal exterior. El acoplamiento GND desconecta la señal de entrada del sistema vertical y lo conecta a masa, permitiéndonos situar el punto de referencia en cualquier parte de la pantalla (generalmente el centro de la pantalla cuando se trabaja con una sola señal).

                Osciloscopio

                Sistema vertical:    Inversión

                Es un conmutador de dos posiciones en forma de botón que permite en una de sus posiciones invertir la señal de entrada en el canal I (existen otros osciloscopios que invierten el canal II).

                Osciloscopio


                Sistema vertical:    Modo alternado / chopeado

                 Es un conmutador de dos posiciones, en forma de botón, que permite, cuando nos encontramos en modo DUAL, seleccionar el modo de trazado de las señales en pantalla.


                En el modo alternado se traza completamente la señal del canal I y después la del canal II y así sucesivamente. Se utiliza para señales de media y alta frecuencia, generalmente cuando el mando TIMEBASE está situado en una escala de 0.5 msg. ó inferior). En el modo chopeado el osciloscopio traza una pequeña parte del canal I después otra pequeña parte del canal II, hasta completar un trazado completo y empezar de nuevo. Se utiliza para señales de baja frecuencia (con el mando TIMEBASE en posición de 1 msg. ó superior).

                Osciloscopio

                Sistema vertical:    Modo simple / dual / suma

                Es un control formado por tres conmutadores de dos posiciones, en forma de botón, que permite seleccionar entres tres modos de funcionamiento: simple, dual y suma.


                En el modo simple actuamos tan solo sobre el conmutador etiquetado como CH I/II. Si no está pulsado visualizaremos la señal que entra por el canal I y si lo está la señal del canal II. El modo dual se selecciona con el conmutador etiquetado DUAL. Si no está pulsado visualizaremos un solo canal (cual, dependerá del estado del conmutador CH I/II) y si lo está visualizaremos simultáneamente ambos canales. El modo suma se selecciona pulsando el conmutador etiquetado I+II (si también lo está el etiquetado como DUAL) y nos permite visualizar la suma de ambas señales en pantalla.

                Osciloscopio

                Sistema horizontal:    Posición

                Este control consta de un potenciómetro que permite mover horizontalmente la forma de onda hasta el punto exacto que se desee. Cuando se está trabajando con una sola señal el punto normalmente elegido suele ser el centro de la pantalla.(Para observar mejor el punto de disparo se suele mover la traza un poco hacia la derecha).

                Osciloscopio



                Sistema horizontal:    Conmutador

                Se trata de un conmutador con un gran número de posiciones, cada una de las cuales, representa el factor de escala empleado por el sistema de barrido horizontal. Por ejemplo si el mando esta en la posición 1 msg/div significa que cada una de las divisiones horizontales de la pantalla (aproximadamente de un 1 cm.) Representan 1 milisegundo. Las divisiones más pequeñas representaran una quinta parte de este valor, o sea, 200 µsg.         

                El osciloscopio presentado puede visualizar un máximo de 2 sg en pantalla (200 msg x 10 divisiones) y un mínimo de 100 nsg por división, si empleamos la Amplificación  (0.5 µsg / 5).

                Osciloscopio



                Sistema horizontal:    Mando variable

                Se trata de un potenciómetro situado de forma concéntrica al conmutador de la base de tiempos y podemos considerarlo como una especie de lupa del sistema horizontal.

                Para realizar medidas es necesario colocarlo en su posición calibrada.

                Osciloscopio



                Sistema horizontal:    Amplificación

                 Este control consta de un pequeño conmutador en forma de botón que permite amplificar la señal en horizontal por un factor constante (normalmente x5 ó x10). Se utiliza para visualizar señales de muy alta frecuencia (cuando el conmutador TIMEBASE no permite hacerlo). Hay que tenerle en cuenta a la hora de realizar medidas cuantitativas (habrá que dividir la medida realizada en pantalla por el factor indicado).

                Osciloscopio



                Sistema horizontal:    XY

                Este control consta de un pequeño conmutador en forma de botón que permite desconectar el sistema de barrido interno del osciloscopio, haciendo estas funciones uno de los canales verticales (generalmente el canal II).

                Como veremos en el capítulo dedicado a las medidas esto nos permite visualizar curvas de respuesta ó las famosas figuras de Lissajous, útiles tanto para la medida de fase como de frecuencia.

                Osciloscopio

                Sistema de disparo:    Sentido

                Este control consta de un conmutador en forma de botón que permite invertir el sentido del disparo. Si está sin pulsar la señal se dispara subiendo (flanco positivo +) y si lo pulsamos se disparará bajando (flanco negativo -).Es conveniente disparar la señal en el flanco de transición más rápida.

                Osciloscopio


                Sistema de disparo:    Nivel

                Se trata de un potenciómetro que permite en el modo de disparo manual, ajustar el nivel de señal a partir del cual, el sistema de barrido empieza a actuar. Este ajuste no es operativo en modo de disparo automático.

                Osciloscopio





                Sistema de disparo:    Acoplamiento

                Debido a las muy diferentes señales que se pueden presentar en electrónica, el osciloscopio presenta un conmutador con el que podemos conseguir el disparo estable de la señal en diferentes situaciones. La gama de frecuencias ó tipos de señales que abarca cada posición del conmutador depende del tipo de osciloscopio (es posible incluso que el osciloscopio tenga otras posiciones, especialmente para tratar las señales de televisión). En la siguiente figura se especifica los datos para un osciloscopio en particular. Para tu osciloscopio deberás consultar la información suministrada por el fabricante, para actualizar esta tabla.

                Osciloscopio





                Sistema de disparo:    Exterior

                 La situación normal es que se permita al osciloscopio quien internamente dispare la señal de entrada. Esto permite sincronizar casi todas las señales periódicas siempre que la altura de la imagen supere un cierto valor (generalmente muy pequeño, del orden de media división). Para algunas señales complicadas, es necesario dispararlas con otra señal procedente del mismo circuito de prueba. Esto puede hacerse introduciendo esta última señal por el conector etiquetado TRIG. EXT. y pulsando también el botón que le acompaña.


                Osciloscopio

                30




Descargar
Enviado por:Ili
Idioma: castellano
País: República Dominicana

Te va a interesar