Geometría

Matemáticas. Recta. Segmento. Plano. Ángulo. Figuras. Polígonos. Igualdad. Congruencia

  • Enviado por: Luis Bellani
  • Idioma: castellano
  • País: Argentina Argentina
  • 11 páginas

publicidad
cursos destacados
Curso de Matemáticas para Administradores CEIPA
Curso de Matemáticas para Administradores CEIPA
Ahora los estudiantes que estudien el núcleo diseñado por Tareasplus y CEIPA Business School y pasen el examen de...
Ver más información

Geometría Básica
Geometría Básica
En el curso de Geometría Básica aprenderás los fundamentos de esta rama de las matemáticas....
Ver más información


  • Conceptos Primitivos: punto, recta y plano

Un punto, una recta, un plano son ideas o abstracciones, que no pueden definirse con términos más sencillos o por otros ya conocidos, es decir, son términos indefinidos o conceptos primitivos.

Podemos observar objetos que los sugieren:

  • Un punto como la marca más pequeña que se puede dibujar.

  • Una recta como una línea derecha sin grosor, ni extremos.

  • El plano ilimitado, continuo en todas direcciones, llano, sin grosor.

  • Definición de espacio

El espacio es el conjunto de todos los puntos.

  • Definición de figura

Una figura plana es todo conjunto de puntos en un plano. Por ejemplo: un triángulo, un segmento, un círculo son figuras planas.

  • Figuras cóncavas y convexas

Una figura es cóncava si cualquier segmento cuyos extremos pertenezcan a dicha figura queda totalmente incluido en ella. En caso contrario, la figura es cóncava.

Cóncava Convexa

  • Algunas características del punto, la recta, el plano

  • Existen infinitos puntos, infinitas rectas, infinitos planos

  • Por un punto pasan infinitas rectas

  • Por una recta pasan infinitos planos

  • Dos puntos determinan una recta a la cual pertenecen, quiere decir que por dos puntos sólo pasa una recta.

  • Una recta y un plano fuera de ella determinan un plano al cual pertenecen.

  • Si dos puntos pertenecen a un plano entonces la recta que los contiene está incluída en dicho plano.

  • 7. A un plano o recta pertenecen infinitos puntos y también hay infinitos puntos fuera de él o ella.

    Figuras especiales

    Semirrecta: se llama semirrecta a un subconjunto de una recta que contiene a un punto(origen) y todos los puntos que están en el mismo lado según uno de los sentidos de la misma.

    Semiplano: si en un plano se traza una recta, éste queda dividido en dos semiplanos.

    Segmento: se llama segmento a la intersección de dos semirrectas de sentidos contrarios que están incluídas en la misma recta.

    Ángulo: es toda región de un plano limitada por dos semirrectas que tienen el mismo origen.

    Segmentos consecutivos: dos segmentos incluidos en una misma recta cuando sólo tienen en común un extremo.

    Ángulos consecutivos: dos ángulos son consecutivos cuando tienen el mismo vértice, un lado común y ningún otro punto común fuera de los de ese lado.

    • Multiláteros y polígonos

    Las figuras geométricas formadas por segmentos de líneas rectas se denominan multiláteros.

    Un polígono es la unión de segmentos que se juntan sólo en sus extremos, de tal manera que como máximo, dos segmentos se encuentren en un punto y cada segmento toque exactamente a otros dos.

    ABC es un trilátero MNOP es un cuadrilátero

    Frontera: la poligonal que delimita a todo polígono se denomina frontera.

    Poligonal AB BC CD es la frontera de ABC

    Región interior y exterior: la frontera en un polígono divide al plano en dos regiones: una interior(que son todos los puntos “que están dentro del polígono”) y otra exterior(todos los puntos fuera del polígono)

    Igualdad y orden

    • El orden de la recta: axioma de ordenación

    Los puntos de una recta están ordenados de dos modos distintos, llamados ordenamientos naturales o sentidos, según los cuales la recta no tiene ni primero ni último punto y entre dos puntos cualesquiera existen infinitos puntos.

    • Segmento y ángulo: congruencia, desigualdad y medición.

    La medición de la longitud asigna un número real a cada segmento.

    Dos segmentos son congruentes si tienen la misma longitud

    La medición de ángulos asigna a cada uno de ellos un número real entre 0 y 180, llamado amplitud.

    La medida en grados(o

    amplitud) de ABC es 40

    Dos ángulos son congruentes si tienen la misma amplitud.

    Dados dos segmentos/ ángulos se puede decir que cada uno de ellos es mayor, menor o igual que el otro.

    Caracteres de congruencia

  • Todo segmento/ ángulo es igual a sí mismo(reflexibilidad)

  • Si un segmento/ ángulo es igual a otro, entonces éste es igual al primero(simetría)

  • Si un seg./ áng. Es igual a otro, y éste a un tercero, entonces el primero es igual al tercero(transitibidad)

  • Relaciones geométricas

    • Ángulo convexo

    Dados en un plano dos rectas que se cortan, se llama ángulo convexo a la intersección de dos semiplanos delimitados por dichas rectas.

    Ángulo cóncavo es la unión de dos semiplanos determinados por dichas rectas.

    AOB es convexo AOB es cóncavo

    Ángulo llano: cuando los lados de un ángulo son semirrectas opuestas, el ángulo se denomina llano y por lo tanto es equivalente a un semiplano.

    Ángulo recto: un ángulo es recto cuando sus lados son semirrectas perpendiculares, por lo tanto equivalen a la mitad de un ángulo llano.

    Clasificación de los ángulos

    • Valor de los ángulos

    El ángulo recto vale 90, el ángulo llano vale 180. Un ángulo es agudo si su valor es menor que 90. Un ángulo es obtuso si su valor se encuentra entre 90 y 180.

    • Ángulos complementarios

    Dos ángulos son complementarios cuando su suma es igual a un recto.

    • Ángulos suplementarios

    Dos ángulos son suplementarios cuando su suma es igual a dos rectos.

    • Se dice que dos ángulos son adyacentes cuando son consecutivos y los lados no comunes son semirrectas opuestas(de aquí se deduce que son suplementarios)

    • Opuestos por el vértice

    Dos ángulos son opuestos por el vértice cuando los lados de uno son las semirrectas opuestas de los lados del otro.

    AOB opuesto por el vértice con A´OB´

    AOB´ opuesto por el vértice con AOB´

    Los ángulos opuestos por el vértice son congruentes.

    RELACIÓN ENTRE RECTAS

    • Dos rectas son perpendiculares cuando al cortarse forman 4 ángulos congruentes.

    • Dos rectas son paralelas si nunca se cortan o son coincidentes

    Propiedades con la relación de la perpendicularidad

  • Si una recta es perpendicular a otra, ésta es perpendicular a la primera(simetría).

  • Los 4 ángulos determinados por dos rectas perpendiculares son ángulos rectos.

  • Las rectas a las que pertenecen los lados de un ángulo recto son perpendiculares.

  • Si dos rectas que se cortan determinan 2 ángulos adyacentes iguales, dichas rectas son perpendiculares.

  • En un plano, por un punto perteneciente o exterior a una recta pasa únicamente una perpendicular.

  • Propiedades de la relación de paralelismo

  • Toda recta es paralela a sí misma(reflexib¡lidad)

  • Si una recta es paralela a otra, ésta es paralela a la primera.(simetría)

  • Si una recta es paralela a otra, y ésta a una tercera, entonces la primera es paralela a la primera.

  • La distancia entre dos rectas paralelas es constante.

  • Por un punto exterior a una recta pasa una sola recta paralela.

        • Ángulos formados por dos rectas cortadas por una tercera.

    • Ángulos interiores:

    3, 4, 5, 6 son los cuatro ángulos situados en la banda comprendida entre las dos rectas a y b.

    • Ángulos exteriores:

    Se llama así a los otros cuatro ángulos que no son interiores.

    • Ángulos correspondientes:

    2 y 6

    3 y 7

    1 y 5

    4 y 8

    Son los pares de ángulos no adyacentes, uno exterior y el otro interior; situados en un mismo semiplano con respecto a t.

    • Ángulos alternos internos

    5 y 3

    4 y 6

    Son los pares de ángulos no adyacentes, ambos interiores, situados en distintos semiplanos con respecto a t (transversal)

    • Ángulos alternos externos:

    1 y 7

    2 y 8

    Lo mismo que en el caso anterior, pero ambos exteriores.

    • Ángulos conjugados internos:

    4 y 5

    3 y 6

    Son los pares de ángulos, ambos interiores, situados en un mismo semiplano con respecto a t.

    • Ángulos conjugados externos:

    1 y 8

    2 y 7

    Igual que en el caso anterior pero ambos exteriores.

    Si a y b son paralelas, entonces:

  • Los ángulos correspondientes son iguales.

  • Los ángulos alternos internos/ externos son iguales entre sí.

  • Los ángulos conjugados internos/ externos son suplementarios.

  • CAPÍTULO V

    CAPÍTULO V V

    CAPÍTULOVII

    CAPÍTULO VII

  • Vídeos relacionados