Geometría básica

Matemáticas. Recta. Plano. Ángulos. Triángulos. Poliedros. Circunferencias. Radianes

  • Enviado por: Nick
  • Idioma: castellano
  • País: Chile Chile
  • 13 páginas
publicidad
cursos destacados
Solucionario del Álgebra de Baldor
Solucionario del Álgebra de Baldor
Por fin encuentras el solucionario de los problemas de Algebra de Baldor en video!!. Tareasplus te ofrece este...
Ver más información

Ejercicios resueltos de Trigonometría Plana
Ejercicios resueltos de Trigonometría Plana
Serie de ejercicios resueltos de Trigonometría Plana

Este curso va ligado al curso actual de...
Ver más información

publicidad

ÍNDICE

  • Elementos fundamentales

  • Ángulos

  • Triángulos y cuadriláteros

  • Áreas y volúmenes

  • Poliedros

  • ELEMENTOS FUNDAMENTALES DE GEOMETRÍA

    Conceptos fundamentales

    Punto ·

    Recta

    Plano

    Semirecta : porción de recta limitada en un extremo por un punto

    *

    Semiplano : es cada una de las partes en que queda dividido un plano por una cualquiera de sus rectas .

    semiplano A

    semiplano B

    Segmento : porción de recta comprendida entre dos de sus puntos , llamados extremos .

    A* *B

    Rectas paralelas : son aquellas que pertenecen al mismo plano y no tienen ningún punto en común .

    Rectas secantes : son rectas que se cortan y dividen por tanto al plano en cuatro regiones .

    Un caso particular de rectas secantes son las perpendiculares , que dividen al plano en cuatro regiones iguales .

    Mediatriz de un segmento : es la recta perpendicular trazada en su punto medio .

    a* *b

    Cualquier punto de la mediatriz equidista de los extremos del segmento .

    Ángulo : es una región del plano limitada por dos semirectas , que se llaman lados , y que tienen un punto común que se llama vértice .

    lado

    vértice *

    lado

    Clasificación de los ángulos :

    - recto : cuando los dos lados son perpendiculares

    - agudo : la abertura de los lados es menor que un ángulo recto

    - obtuso : la abertura de los lados es mayor que un ángulo recto

    Bisectriz de un ángulo : es la semirecta que divide al ángulo en dos ángulos iguales .

    Cualquier punto de la bisectriz equidista de los lados del ángulo .

    Linea poligonal : es una figura formada por varios segmentos unidos por sus extremos .

    B

    D

    C

    A

    Cuando el extremo del último segmento coincide con el origen del primero , la linea poligonal se llama cerrada , y en caso de que no coincidan , abierta .

    Polígono : es la región del plano limitada por una línea poligonal cerrada .

    A

    B

    C

    D

    Los elementos de los polígonos son :

    a) Lados : segmentos que limitan el polígono , AB , BC , CD , DA .

    b) Perímetro : suma de las longitudes de los lados .

    c) Vértices : Puntos donde se unen dos lados consecutivos , A , B , C , D . En todo polígono el nº de lados y vértices coincide .

    d) Diagonales : son los segmentos que unen vértices no consecutivos .

    e) Ángulos interiores : son los ángulos formados por lados consecutivos .

    f) Ángulos exteriores : son los ángulos formados por un lado y la prolongación de otro consecutivo .

    A Ángulo interior = ABC

    B Ángulo exterior = CBF

    F

    C

    Clasificación de los polígonos :

    a) Por el número de lados :

    Triángulo

    Cuadrilátero

    Pentágono

    Hexágono

    Heptágono

    Octógono

    Eneágono

    Decágono

    b) Por su forma :

    Equilátero : lados iguales

    Equiángulo : ángulos iguales

    Regular : lados y ángulos iguales

    Irregular : lados y ángulos desiguales

    Un polígono se halla inscrito en una circunferencia cuando todos sus vértices están contenidos el ella . Se dice entonces que la circunferencia está circunscrita al polígono .

    Un polígono se halla circunscrito a una circunferencia cuando todos sus lados son tangentes ( tocan en un solo punto ) a la misma . Se dice entonces que la circunferencia está inscrita en el polígono .

    Cuadrilátero inscrito en la circunferencia Pentágono circunscrito a una circunferencia

    o circunferencia circunscrita al cuadrilátero o circunferencia inscrita en el pentágono .

    Medida de ángulos

    Puesto que el ángulo recto resulta una medida demasiado grande para medir ángulos , se definen otro tipo de unidades :

    a) División sexagesimal

    La unidad que habitualmente se utiliza es el grado centesimal , que es la noventava parte de un ángulo recto . Por lo tanto una circunferencia tiene 4 ángulos rectos * 90º cada uno = 4·90 = 360º

    Minuto sexagesimal es la sesentava parte de un grado sexagesimal . 1º = 60'

    Segundo sexagesimal es la sesentava parte de un minuto sexagesimal . 1' = 60''

    b) División centesimal (no se suele utilizar)

    La unidad es el grado centesimal , que es la centésima parte de un ángulo recto . Por lo tanto una circunferencia tiene 4 ángulos rectos *100g = 4·100g = 400g

    Minuto centesimal es la centésima parte de un grado centesimal . 1g = 100m

    Segundo centesimal es la centésima parte de un minuto centesimal . 1m = 100s

    c) Radián

    Un radián es el ángulo cuyo arco tiene la longitud igual al radio de una circunferencia centrada en el vértice .

    Como ya veremos el perímetro de una circunferencia es 2··R = 2·3'14·R=6'28·R es decir el perímetro de una circunferencia es aproximadamente 6 veces el radio de la circunferencia que nosotros dibujemos . Por lo tanto en un giro completo hay 6'28 radianes , es decir :

    1 revolución = 360º = 2· radianes

    Si hacemos una regla de tres :

    360º 2· radianes

    xº 1 radián

    x = 360/2· = 57'29º

    En el caso de que tengamos que pasar de grados a radianes (o a la inversa) resolveremos una regla de tres , siempre dejando el valor de  sin operar , por ejemplo :

    ¿ Cuántos radianes son 30º ?

    360º 2· radianes

    30º x radianes

    x = 30·2·/360 = /6 radianes

    ¿ Cuántos grados son /4 radianes ?

    360º 2· radianes

    x /4 radianes

    x = (360·/4)/2 = 45º

    Expresión compleja y decimal de la medida de un ángulo sexagesimal

    La medida de un ángulo puede venir expresada en grados , minutos y segundos , o en una sola unidad :

    8º 30' 36'' 8'51º

    Forma compleja Forma decimal

    Veamos como se pasa de una a otra :

    8º 30' 36'' = 8º 30' 36/60' = 8º 30' 0'6' = 8º 30'6' = 8º 30'6/60º = 8º 0'51º = 8'51º

    8'51º = 8º 0'51·60' = 8º 30'6' = 8º 30' 0'6·60'' = 8º 30' 36''

    Operaciones con medidas de ángulos sexagesimales

    a) Suma

    Para sumar ángulos deberemos sumar grados con grados , minutos con minutos y segundos con segundos .

    32º 15' 6''

    + 2º 8' 29''

    34º 23' 35''

    Si el resultado de alguna de estas sumas es mayor o igual que 60 , lo pasamos a la unidad inmediatamente superior .

    15º 20' 16''

    + 20º 30' 54''

    35º 50' 70''

    Teniendo en cuenta que 70'' = 1' 10'' el resultado de la suma lo expresariamos como :

    35º 51' 10''

    Importante : si la suma de dos ángulos es 90º , es decir , juntos forman un ángulo recto , se dice que son complementarios . Si la suma de dos ángulos es 180º , es decir , forman un ángulo llano , se dice que son suplementarios .

    b) Resta

    La operación se dispone igual que la suma

    30º 31' 12''

    - 22' 48''

    Puesto que no podemos restarle 48'' a 12'' debemos modificar el minuendo pasando 1 minuto a segundos : 30º 31' 12'' = 30º 30' 72''

    Con lo cual ya podemos realizar la resta :

    30º 30' 72''

    - 22' 48''

    30º 8' 24''

    c)Multiplicación

    Para multiplicar un ángulo por un número natural debemos multiplicar los grados minutos y segundos por ese número :

    4º 20' 10''

    x 5

    20º 100' 50''

    Ahora bien como 100' = 1º 40' se tiene que : 20º 100' 50'' = 21º 40' 50''

    d) División

    Par dividir un ángulo entre un número natural , se dividen por separado grados , minutos y segundos entre este número natural :

    206º 37' 46'' 5

    06º 41º 19' 33''

    1ºx60 = 60'

    97'

    47'

    2'x60 = 120''

    166''

    16

    1''

    Otra forma de operar con grados sexagesimales sería convertir los ángulos a grados solamente y operar con ellos , y después si se quiere convertirlo otra vez a grados minutos y segundos .

    32º 15' 6'' = 32º + 15/60º + 6/3600º = 32º + 0'25º + 0'00166 = 32'25166º

    2º 8' 29'' = 2º + 8/60º + 29/3600º = 2º + 0'133º + 0'00805º = 2'14105º

    34'39271º

    34º

    0'39271·60 = 23'5626'

    0'5626·60 = 35''

    Por lo que obtendriamos el mismo resultado : 34º 23' 35''

    TRIÁNGULOS Y CUADRILÁTEROS

    Triángulos . Clasificación .

    Como ya vimos los triángulos son poligonos de 3 lados y por lo tanto 3 ángulos . Se pueden clasificar :

    a) Por sus lados :

    Equilátero , si tiene los tres lados iguales

    Isósceles , si tiene dos lados iguales

    Escaleno , si tiene los tres lados diferentes

    b) Por sus ángulos :

    Rectángulo , si tiene un ángulo recto

    Acutángulo , si sus tres ángulos son agudos

    Obtusángulo , si tiene un ángulo obtuso

    En los triángulos rectángulos el lado opuesto al ángulo recto se llama hipotenusa y los otros dos lados , catetos .

    Propiedades del triángulo

    1.En todo triángulo , un lado es menor que la suma de los otros dos , pero mayor que su diferencia .

    b c

    a

    En la figura se observa que si a fuese mayor que b+c entonces no podríamos juntar sus lados . Pero por otro lado a-b tampoco puede ser mayor que c para que se puedan unir .

    2.La suma de los ángulos interiores de un triángulo es 180º.

    a c b

    a b

    Los lados alternos internos a las paralelas son iguales .

    Como por otro lado un ángulo llano mide 180º tenemos que a + b + c = 180º

    3.Un ángulo exterior de un triángulo es igual a la suma de los dos ángulos interiores no adyacentes .

    b

    180-a=b+c a c

    a

    Rectas y puntos notables de un triángulo

    Mediatrices : son las rectas perpendiculares trazadas en los puntos medios de los lados .

    Las tres mediatrices de un triángulo se cortan en un punto que se llama circuncentro que equidista de los vértices del triángulo y por lo tanto es el centro de la circunferencia circunscrita al triángulo .

    Bisectrices : son las semirectas que dividen en dos partes iguales los ángulos interiores al triángulo .

    Las tres bisectrices de un triángulo se cortan en un punto llamado incentro que equidista de los lados del triángulo y por lo tanto es el centro de la circunferencia inscrita al triángulo .

    Alturas : son los segmentos perpendiculares a un lado o a su prolongación , trazados desde el vértice opuesto .

    Las tres alturas de un triángulo se cortan en un punto llamado ortocentro .

    Medianas : son los segmentos que unen un vértice con el punto medio del lado opuesto.

    Las tres medianas de un triángulo se cortan en un punto llamado baricentro o centro de gravedad .

    Teorema de Pitágoras

    '' En un triángulo rectángulo la suma de los cuadrados de los catetos es igual al cuadrado de la hipotenusa ''

    b a a2 = b2 + c2

    c

    Cuadriláteros . Clasificación .

    Los cuadriláteros como su propio nombre indica son aquellos polígonos de cuatro lados y por lo tanto cuatro ángulos . Se clasifican segun el paralelismo de sus lados en :

    1.Trapezoides son los que no tienen ningún lado paralelo a otro .

    2.Trapecios son los cuadriláteros con dos lados paralelos .

    Los trapecios se pueden clasificar en :

    - Trapecio rectángulo , es el que tiene dos ángulos rectos

    - Trapecio isósceles , es el que tiene los lados no paralelos iguales

    - Trapecio escaleno , sin ninguna propiedad específica

    3.Paralelogramos son aquellos cuadriláteros que tienen los lados paralelos dos a dos

    y por lo tanto los ángulos opuestos (no adyacentes) son iguales y los lados opuestos son iguales .

    Los paralelogramos se pueden clasificar en :

    - Rectángulo , es el paralelogramo que tiene los 4 ángulos iguales

    (rectos) , pero los lados adyacentes no son iguales .

    - Cuadrado , es el que tiene los 4 lados y 4 ángulos iguales .

    - Rombo , es el que tiene los 4 lados iguales , y los ángulos opuestos iguales .

    - Romboide , cuando no es niguno de los anteriores .

    ÁREAS Y VOLÚMENES

    Áreas de figuras planas

    Cuadrado Rectángulo Triángulo

    l h h

    l b b

    A = l · l A = b · h A =

    Vídeos relacionados