Derivación

Matemáticas. Cálculo diferencial. Derivada, derivadas

  • Enviado por: Pedro Leira Jiménez
  • Idioma: castellano
  • País: España España
  • 1 páginas
publicidad
publicidad

TABLA DE DERIVACION

y=k

y'=0

y=x

y'=1

y=xn

y'=nxn-1

y=k*f(x)

y'=k*f'(x)

y=f(x)+g(x)

y'=f'(x)+g'(x)

y=f(x)*g(x)

y'=f'(x)*g(x)+g'(x)*f(x)

y=f(x)/g(x)

y'=f'(x)g(x)-g'(x)f(x)/g2(x)

y=Sen x

y'=Cos x

y=Cos x

y'= -Sen x

y=tag x

y'=1/Cos2 x y'=1+tag2*x

y=Sec x

y'=Sec x*tag x

y=Cosec x

y'= -Cosec x*Cotag x

y=Cotag x

y'=-1/Sen2 x y'=-1-Cotg2 x

y=logax

y'=1/x * loga e

y=loga f(x)

y'=1/f(x) * loga e * f'(x)

y=ln x

y'= 1/x

y=ln f(x)

y'= 1/f(x) * f'(x)

y=ax

y'=ax * ln a

y=af(x)

y'=af'(x) * ln a * f'(x)

y=ex

y'=ex

y=efx)

y'=ef(x) * f'(x)

y=arc Sen x

y'=1/1-x2 ½

y=arc Sen f(x)

y'=1/1-f2(x)1/2(x) * f'(x)

y=arcCos x

y'= - 1/1-x2 ½

y=arc Cos f(x)

y'= -1/1-f2(x)1/2(x) * f'(x)

y=arc tag x

y'=1/1+x2

y=arc tag f(x)

y'=1/1+f2(x)

y=arc Cotag x

y'= -1/1+x2

y=arc Cotag f(x)

y'=1/1+f2(x) * f'(x)

y=[f(x)]n

y'=n[f(x)]n-1f'(x)

y=f(x) 1/n

y'=1/n * [f(x)n-1]1/n f'(x)