$(function(){
$("#headerSearchForm").on("submit", function(event)
{
event.preventDefault();
var query = $.trim($("#headerSearchQ").val());if (query.length == 0) {return false;}
location.href = "https://buscador.rincondelvago.com/" + query.replace(/[^ a-záâàäéêèëíîìïóôòöúûùüçñA-ZÁÂÀÄÉÊÈËÍÎÌÏÓÔÒÖÚÛÙÜÇÑ0-9'"]/g,"").replace(/ /g,"+");
});
$("#bodySearchForm").on("submit", function(event)
{
event.preventDefault();
var query = $.trim($("#bodySearchQ").val());if (query.length == 0) {return false;}
location.href = "https://buscador.rincondelvago.com/" + query.replace(/[^ a-záâàäéêèëíîìïóôòöúûùüçñA-ZÁÂÀÄÉÊÈËÍÎÌÏÓÔÒÖÚÛÙÜÇÑ0-9'"]/g,"").replace(/ /g,"+");
});
});
var div_1_sizes = [
[320, 100],
[320, 50],
[300, 250],
[300, 600]
];
var div_2_sizes = [[970, 90], [728, 90],[970, 250]];
var PREBID_TIMEOUT = 2000;
var adUnits = [{
code: 'div-gpt-ad-1498674722723-0',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485609'
}
}]
},{
code: 'div-gpt-ad-1515779430602-1',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485931'
}
}]
},{
code: 'div-gpt-ad-1515779430602-2',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485934'
}
}]
},{
code: 'div-gpt-ad-1515779430602--3',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485937'
}
}]
},{
code: 'div-gpt-ad-1515779430602--4',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485941'
}
}]
},{
code: 'div-gpt-ad-1515779430602--5',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485945'
}
}]
},{
code: 'div-gpt-ad-1515779430602--6',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485949'
}
}]
},{
code: 'div-gpt-ad-1515779430602--7',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485953'
}
}]
},{
code: 'div-gpt-ad-1515779430602--8',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485956'
}
}]
},{
code: 'div-gpt-ad-1515779430602--9',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485957'
}
}]
},{
code: 'div-gpt-ad-1515779430602--10',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485958'
}
}]
},{
code: 'div-gpt-ad-1515779430602--11',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485959'
}
}]
},{
code: 'div-gpt-ad-1515779430602--12',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485960'
}
}]
},{
code: 'div-gpt-ad-1515779430602--13',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485961'
}
}]
},{
code: 'div-gpt-ad-1515779430602--14',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--15',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--16',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--17',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--18',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--19',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--20',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--21',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--22',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--23',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--24',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
}];
var googletag = googletag || {};
googletag.cmd = googletag.cmd || [];
googletag.cmd.push(function() {
googletag.pubads().disableInitialLoad();
});
var pbjs = pbjs || {};
pbjs.que = pbjs.que || [];
pbjs.que.push(function() {
pbjs.addAdUnits(adUnits);
pbjs.requestBids({
bidsBackHandler: initAdserver
});
});
function initAdserver() {
if (pbjs.initAdserverSet) return;
pbjs.initAdserverSet = true;
googletag.cmd.push(function() {
pbjs.que.push(function() {
pbjs.setTargetingForGPTAsync();
googletag.pubads().refresh();
});
});
}
setTimeout(function() {
initAdserver();
}, PREBID_TIMEOUT);
googletag.cmd.push(function() {
googletag.defineSlot('/49859683/RDV_web', div_2_sizes, 'div-gpt-ad-1498674722723-0').addService(googletag.pubads());
googletag.pubads().enableSingleRequest();
googletag.enableServices();
});
//
// Begin comScore Tag
var _comscore = _comscore || [];
_comscore.push({ c1: "2", c2: "5641052" });
(function() {
var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true;
s.src = (document.location.protocol == "https:" ? "https://sb" : "https://b") + ".scorecardresearch.com/beacon.js";
el.parentNode.insertBefore(s, el);
})();
// End comScore Tag
//
var domain= "rincondelvago.com";
//-->
Compartir
0 Me sirvió
0 No me sirvió
Tabla de contenido
1. Regresión lineal simple 1
1.1 Regresión por mínimos cuadrados 1
1.2 Regresión MINMAD 2
1.3 Regresión MINMAXAD 6
2. Regresión lineal múltiple 7
2.1 El método de mínimos cuadrados 7
2.2 Estimación de mínimos cuadrados con restricciones lineales consistentes 8
2.3 Estimadores sesgados 8
2.4 Regresión MINMAD 9
2.5 Procedimiento del simplex para la regresión MINMAD 10
2.6 Algoritmo modificado de Barrodale y Roberts 11
2.7 Dualidad en regresión MINMAD 14
2.8 Método para variables acotadas 15
2.9 Añadir nuevas variables al modelo 17
2.10 Añadir nuevas observaciones al modelo 18
2.11 Formulación alternativa del problema MINMAD 18
2.12 Estimación insesgada utilizando MINMAD 19
2.13 Estimadores de máxima verosimilitud y estimadores MINMAD 20
2.14 Minimización del máximo de las desviaciones absolutas. (Regresión
MINMAXAD) 21
2.15 Obtención de estimadores insesgados usando MINMAXAD 23
2.16 Combinación convexa de regresión por mínimos cuadrados y regresión MINMAD 25
2.17 Programación lineal complementaria y su aplicación a problemas de regresión. 26
2.18 Minimización de la suma de los valores absolutos de las diferencias entre desviaciones (Regresión MINSADBED) 32
2.19 Minimización de la suma de las diferencias absolutas entre desviaciones absolutas (Regresión MINSADBAD) 33
2.20 Búsqueda de la `mejor' ecuación de regresión utilizando el criterio MINMAD 33
Regresión lineal simple
Disponemos de n pares de observaciones (Xi , Yi), (y= 1, 2,...,n) y deseamos ajustar una línea recta a la nube de puntos resultante.
Comenzamos con un modelo. Puesto que asumimos que la relación funcional de Y y X es lineal, será de la forma:
Descargar
Enviado por: | Simeón |
Idioma: | castellano |
País: | España |