$(function(){
$("#headerSearchForm").on("submit", function(event)
{
event.preventDefault();
var query = $.trim($("#headerSearchQ").val());if (query.length == 0) {return false;}
location.href = "https://buscador.rincondelvago.com/" + query.replace(/[^ a-záâàäéêèëíîìïóôòöúûùüçñA-ZÁÂÀÄÉÊÈËÍÎÌÏÓÔÒÖÚÛÙÜÇÑ0-9'"]/g,"").replace(/ /g,"+");
});
$("#bodySearchForm").on("submit", function(event)
{
event.preventDefault();
var query = $.trim($("#bodySearchQ").val());if (query.length == 0) {return false;}
location.href = "https://buscador.rincondelvago.com/" + query.replace(/[^ a-záâàäéêèëíîìïóôòöúûùüçñA-ZÁÂÀÄÉÊÈËÍÎÌÏÓÔÒÖÚÛÙÜÇÑ0-9'"]/g,"").replace(/ /g,"+");
});
});
var div_1_sizes = [
[320, 100],
[320, 50],
[300, 250],
[300, 600]
];
var div_2_sizes = [[970, 90], [728, 90],[970, 250]];
var PREBID_TIMEOUT = 2000;
var adUnits = [{
code: 'div-gpt-ad-1498674722723-0',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485609'
}
}]
},{
code: 'div-gpt-ad-1515779430602-1',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485931'
}
}]
},{
code: 'div-gpt-ad-1515779430602-2',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485934'
}
}]
},{
code: 'div-gpt-ad-1515779430602--3',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485937'
}
}]
},{
code: 'div-gpt-ad-1515779430602--4',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485941'
}
}]
},{
code: 'div-gpt-ad-1515779430602--5',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485945'
}
}]
},{
code: 'div-gpt-ad-1515779430602--6',
mediaTypes: {
banner: {
sizes: div_2_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485949'
}
}]
},{
code: 'div-gpt-ad-1515779430602--7',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485953'
}
}]
},{
code: 'div-gpt-ad-1515779430602--8',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485956'
}
}]
},{
code: 'div-gpt-ad-1515779430602--9',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485957'
}
}]
},{
code: 'div-gpt-ad-1515779430602--10',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485958'
}
}]
},{
code: 'div-gpt-ad-1515779430602--11',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485959'
}
}]
},{
code: 'div-gpt-ad-1515779430602--12',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485960'
}
}]
},{
code: 'div-gpt-ad-1515779430602--13',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485961'
}
}]
},{
code: 'div-gpt-ad-1515779430602--14',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--15',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--16',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--17',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--18',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--19',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--20',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--21',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--22',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--23',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
},{
code: 'div-gpt-ad-1515779430602--24',
mediaTypes: {
banner: {
sizes: div_1_sizes
}
},
bids: [{
bidder: 'appnexus',
params: {
placementId: '12485962'
}
}]
}];
var googletag = googletag || {};
googletag.cmd = googletag.cmd || [];
googletag.cmd.push(function() {
googletag.pubads().disableInitialLoad();
});
var pbjs = pbjs || {};
pbjs.que = pbjs.que || [];
pbjs.que.push(function() {
pbjs.addAdUnits(adUnits);
pbjs.requestBids({
bidsBackHandler: initAdserver
});
});
function initAdserver() {
if (pbjs.initAdserverSet) return;
pbjs.initAdserverSet = true;
googletag.cmd.push(function() {
pbjs.que.push(function() {
pbjs.setTargetingForGPTAsync();
googletag.pubads().refresh();
});
});
}
setTimeout(function() {
initAdserver();
}, PREBID_TIMEOUT);
googletag.cmd.push(function() {
googletag.defineSlot('/49859683/RDV_web', div_2_sizes, 'div-gpt-ad-1498674722723-0').addService(googletag.pubads());
googletag.pubads().enableSingleRequest();
googletag.enableServices();
});
//
// Begin comScore Tag
var _comscore = _comscore || [];
_comscore.push({ c1: "2", c2: "5641052" });
(function() {
var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true;
s.src = (document.location.protocol == "https:" ? "https://sb" : "https://b") + ".scorecardresearch.com/beacon.js";
el.parentNode.insertBefore(s, el);
})();
// End comScore Tag
//
var domain= "rincondelvago.com";
//-->
Compartir
0 Me sirvió
1 No me sirvió
* Método de Newton-Raphson.
OBJETIVO.
Este método consiste de proporcionar un Xi inicial de aproximación a la raíz analítica r en seguida se evalúa la función en Xi obteniendo se f(Xi) se traza una recta tangente que intercepta en Xi+1al eje de las X. A este punto se le llama raíz nueva de aproximación a la r.
Algoritmo:
1. Dada una función f(X)=0 Obtener la Primera y Segunda derivada.
2. Elegir un valor inicial X0. Este valor inicial debe cumplir con el criterio de convergencia:
3. Obtener una nueva aproximación evaluando la formula general del método:
Xn+1=Xn - f(Xn)/ f ´(Xn)
4. Evaluar la aproximación relativa
| (Xn+1 - Xn) / Xn+1 | < Tolerancia
No. (Falso) Repetir el paso 3 y 4
Si . (Verdadero) Entonces Xn+1 Es la Raíz
Si existe una función f(x)=0 y un intervalo [a,b], tenemos una raiz y xo una aproximación de , se extrae de la llamada Serie de Taylor (tomando hasta la 2ª potencia) :
Despejando , se tiene:
Siguiendo esto como una sucesión, se tiene:
Tenemos la fórmula de Newton-Raphson. Además, existe un estudio de la convergencia del método, en donde G(x) se acota, teniendo la fórmula de convergencia como:
Cabe señalar que el método de Newton-Raphson es convergente en forma cuadrática, es decir, que el número de cifras decimales correctas se duplica aproximadamente en cada iteración, o el error es aproximadamente proporcional al cuadrado del error anterior.
La ventaja de este método es que, al ser un método iterativo, éste entrega una sucesión , resoluciones aproximadas, convergiendo más rápidamente al valor buscado y se usan menos operaciones aritméticas.
Método de Gauss-Jordan.
Es una variante del método de Gauss y consiste en producir ceros en toda posición no diagonal de cada columna j, ubiando por operación unos en la posición (j,j).Esto es:
[a,b] ! [I,x]
donde I es la matriz identidad de orden n, y x es la solución del sistema Ax=b.
Este método se conoce como método directo para resolver ecuaciones lineales tipo Ax=b, donde en un número finito de pasos da la solución exacta.Además, es eficiente cuando la matriz A posee elelmentos no nulos, los que son más fáciles de aplicarles operaciones matemáticas.
Programa en C++
#include<stdio.h>
#include<conio.h>
void main()
{
int n,m,i,j,k;
float a[25][26],b[25][26],apoyo;
clrscr();
printf("\n MÉTODO DE GAUSS-JORDAN");
printf("\n\n Ingrese el nº de incógnitas \n\n Nº de Ecuaciones = ");
scanf("%d",&n);
printf("\n Ingrese coeficientes\n");
/* Datos para iniciar método */
for(i=1;i<=n;i++)
{
printf("\n Fila %d \n",i);
for(j=1;j<=n+1;j++)
{
printf(" Ingese a(%d,%d) = ",i,j);
scanf("%f",&a[i][j]);
}
}
/* Fin Del Ciclo De Solicitud De Datos */
/* Proceso Principal */
m=n+1;
do
{
if(a[1][1]==0)
{
k=m-1;
for(i=2;i<=k;i++)
{
if(a[i][1]!=0)
{
for(j=1;j<=m;j++)
{
apoyo=a[i][j];
a[i][j]=a[1][j];
a[1][j]=apoyo;
}
}
}
}
else
{
for(j=2;j<=m;j++)
{
for(i=2;i<=n;i++)
{
b[i-1][j-1]=a[i][j]-a[1][j]*a[i][1]/a[1][1];
}
}
for(j=2;j<=m;j++)
{
b[n][j-1]=a[1][j]/a[1][1];
}
m=m-1;
for(j=1;j<=m;j++)
{
for(i=1;i<=n;i++)
{
a[i][j]=b[i][j];
}
}
}
}
while(m>1);
printf("\n\n SOLUCION DEL SISTEMA\n ");
for(i=1;i<=n;i++)
{
printf("\n X(%d) = %1.4f",i,a[i][1]);
}
printf("\n\n Fin del programa");
getch();
}
Universidad Católica de la
Santísima Concepción.
Facultad de Ingeniería.
Area ciencias Básicas.
Descargar
Enviado por: Real Bizkit Idioma: castellanoPaís: Chile