Matemáticas


Matemáticas


DISTRIBUCION HIPERGEOMETRICA

Empleada para calcular la probabilidad de obtener determinado número de éxitos en un espacio muestral de n ensayos; pero a diferencia de la distribución binomial es que los datos de la muestra se extraen sin reemplazo en una población finita. Por esto es que el resultado de una observación depende o es afectado por el resultado de cualquier otra u otras observaciones anteriores.

Es decir la distribución hipergeométrica se emplea para muestreos sin reemplazo de una población finita cuya probabilidad de ocurrencia cambia a lo largo del ensayo.

La aplicación de la distribución hipergeométrica se encuentra en muchas áreas, con un uso considerable en el muestreo de aceptación, las pruebas electrónicas y el aseguramiento de calidad. Es obvio que en muchos d e estos campos la prueba se realiza a expensas de la pieza que se esta probando. Esta se destruye y por lo tanto no puede remplazarse en la muestra.

DEFINICION

Una variable aleatoria X tiene una distribución hipergeométrica y se conoce como variable aleatoria hipergeométrica si y solo si su distribución de probabilidad esta dada por:

h(x; n, N, M) =

para x = 0, 1,2,….., n

xM y n - xN - M

Así, para el muestreo sin reemplazos, el número de éxitos en n ensayos es una variable aleatoria que tiene una distribución hipergeométrica con los parámetros n, N, M.

Ejemplo

Lotes de 40 componentes cada uno se consideran aceptables si no contienen mas d e 3 defectuosos. El procedimiento de muestreo del lote consiste en seleccionar 5 componentes aleatoriamente y rechazar el lote si se encuentra un componente defectuoso. ¿Cual es la probabilidad de que exactamente 1 defectuoso se encuentre en la muestra si hay 3 defectuosos en todo el lote?

Solución Si se utiliza la distribución hipergeométrica con n=5, N=40, M=3, x=1, se encuentra la probabilidad de obtener un defectuoso de la siguiente manera:

h(x; n, N, M) = = 0.3011

La media y la varianza de la distribución hipergeométrica h(x; n, N, M) están dadas por:

µ =

y

2 =

Ejemplo

Encuentre la media y la varianza de la variable aleatoria del ejemplo anterior

Solución

µ = = = 0.375

2 = = 0.3113

Distribución hipergeométrica multivariada

Si N resultados pueden dividirse en las K celdas A1, A2, ........., Ak con a1, a2, ........ak elementos respectivamente, entonces la distribución de probabilidad de las variables aleatorias X1, X2, ......Xk, que representan el numero de elementos seleccionados de A1, A2, ...., Ak en una muestra aleatoria de tamaño N, es:

f(

con y

DISTRIBUCION BINOMIAL NEGATIVA

Considérese un experimento en el cual las propiedades que sean las mismas que aquellas indicadas para un experimento binomial, con la excepción de que los intentos se repetirán hasta que ocurra un numero determinado de éxitos. Por lo tanto, en lugar de encontrar la probabilidad de x éxitos en n intentos, donde n es fijo, ahora se esta interesado en la probabilidad de que el k-esimo éxito ocurra en el x-esimo intento. Los experimentos de esta clase reciben el nombre de experimentos binomiales negativos.

DEFINICION

Una variable aleatoria X tiene una distribución binomial negativa y se conoce como una variable aleatoria binomial negativa si y solo si

b*(x; k, θ) =

para x=k, k + 1, k + 2, ….

Así, el número de ensayos en que ocurre el kesimo éxito es una variable aleatoria que tiene una distribución binomial negativa con los parámetros y θ. El nombre “distribución binomial negativa“ se deriva del hecho que los valores b*(x; k, θ) para x=k, k + 1, k + 2, …. Son los términos sucesivos de la expansión binomial de .

Ejemplo

Si la probabilidad es d e 0.40 de que un niño expuesto a una enfermedad contagiosa la contraiga, ¿Cuál es la probabilidad de que el décimo niño expuesto a la enfermedad será el tercero en contraerla?.

Solución

Sustituimos x=10, k=3 y θ=0.40 en la formula para la distribución binomial negativa, y obtenemos.

b*(10; 3, 0.40) = = 0.0645

Cuando hay una tabla de probabilidades binomiales disponibles, generalmente se puede simplificar la determinación de las probabilidades binomiales negativas mediante la identidad.

La media y la varianza de la distribución negativa son

y =

Puesto que la distribución binomial negativa con k = 1 tiene aplicaciones importantes, se le ha dado un nombre especial: distribución geométrica.

DISTRIBUCION DE POISSON

Se dice que existe un proceso de Poisson si podemos observar eventos discretos en un área de oportunidad - un intervalo continuo (de tiempo, longitud, superficie, etc.) - de tal manera que si se reduce lo suficiente el área de oportunidad o el intervalo,

  • La probabilidad de observar exactamente un éxito en el intervalo es constante.

  • La probabilidad de obtener más de un éxito en el intervalo es 0.

  • La probabilidad de observar un éxito en cualquier intervalo es estadísticamente independiente de la de cualquier otro intervalo.

  • Esta distribución se aplica en situaciones como:

    • El numero de pacientes que llegan al servicio de emergencia de un hospital en un intervalo de tiempo.

    • El numero de radiaciones radiactivas que se recibe en un lapso de tiempo,

    • El numero de glóbulos blancos que se cuentan en una muestra dada.

    • El numero de partos triples por año

    DEFINICION

    Una variable aleatoria X tiene una distribución de Poisson y se conoce como una variable aleatoria de Poisson si y solo si su distribución de probabilidades esta dada por

    para x = 0,1,2,…

    Ejemplo

    Si 2% de los libros encuadernados en cierto taller tiene encuadernación defectuosa, obtener la probabilidad de que 5 de 400 libros encuadernados en este taller tengan encuadernaciones defectuosas.

    La media y la varianza de la distribución de Poisson están dadas por

    y

    La función generatriz de momentos de la distribución de Poisson esta dada por

    =

    DISTRIBUCION GAMMA

    La distribución gamma y exponencial juegan un papel importante tanto en teoría de colas como en problemas d e confiabilidad. El tiempo entre las llegadas en las instalaciones de servicio y el tiempo de falla de componentes y sistemas eléctricos.

    La distribución gamma toma su nombre de la bien conocida función gamma, que se estudia en muchas áreas de las matemáticas. Antes de proceder al estudio de la distribución gamma, debe revisarse esta función.

    DEFINICION

    La función gamma se define como:

    para α > 0.

    Una propiedad importante de la función gamma es que Г(1/2) =

    DISTRIBUCION GAMMA

    La variable aleatoria continua X tiene una distribución gamma, con parámetros α y β, si su función de densidad es:

    f(X) =

    donde α > 0 y β > 0

    La media y la varianza de la distribución gamma son:

    µ = αβ y σ2 = αβ2

    DISTRIBUCION EXPONENCIAL

    La distribución gamma especial para la cual α=1 se llama distribución exponencial.

    DEFINICION

    La variable aleatoria continua X tiene una distribución exponencial con parámetro α y β, si su función de densidad es

    f(x) =

    donde β > 0

    Grafica de función de densidad de probabilidad

    Su función de distribución es

    Grafica de función de distribución de probabilidad

    Aplicaciones para la distribución exponencial son los tiempos dentro accidentes con probabilidad invariable.

    La media y la varianza de la distribución exponencial son:

    µ=β y σ2 = β2

    EJEMPLOS

    Suponga que un sistema contiene cierto tipo de componente cuyo tiempo de falla en años está dado por la variable aleatoria T, distribuida exponencialmente con tiempo promedio de falla . S í 5 de estos componentes se instalan en diferentes sistemas, ¿cuál es la probabilidad de que al menos 2 continúen funcionando después de 8 años?

    Solución

    La probabilidad de que un determinado componente esté funcionando aún después de 8 años es:

                         

    la | nos indica que la integral se va  a evaluar desde 8 hasta ¥      

    Sea x el número de componentes funcionando después de 8 años. Entonces mediante la distribución Binomial,

    n = 5

    p = 0.20 = probabilidad de que un componente esté funcionando después de 8 años

    q = 1-p = 0.80 = probabilidad de que un componente no funcione después de 8 años

    P(x ³ 2 ) = p(x=2) + p(x=3) + p(x=4)+p(x=5) = 1 - p(x = 0, 1)

    DISTRIBUCION JI CUADRADA

    Otro caso especial muy importante de la distribución gamma se obtiene haciendo α = v/2 y β = 2 donde v es un entero positivo. El resultado se llama distribución ji cuadrada. La distribución tiene un parámetro sencillo, v, que recibe el nombre de grados d e libertad.

    DEFINICION

    La variable aleatoria continua X tiene una distribución ji cuadrada, con v grados d e libertad, si su función de densidad es:

    f(x) =

    donde v es un numero positivo

    La distribución ji cuadrada juega un papel vital en la inferencia estadistica.

    La función de distribución es

    donde es la función gamma incompleta.

    La media y la varianza de la distribución ji-cuadrada son:

    µ = v y σ2 = 2v

    Aplicaciones

    La distribución ji-cuadrado tiene muchas aplicaciones en inferencia estadística, por ejemplo en el test ji-cuadrado y en la estimación de varianzas. También está involucrada en el problema de estimar la media de una población normalmente distribuida y en el problema de estimar la pendiente de una recta de regresión lineal, a través de su papel en la distribución t de Student, y participa en todos los problemas de análisis de varianza, por su papel en la distribución F de Snedecor, que es la distribución del cociente de dos variables aleatorias de distribución ji-cuadrado e independientes.

    Propiedades de las distribuciones ji-cuadrada

  • Los valores de X2 son mayores o iguales que 0.

  • La forma de una distribución X2 depende del gl=n-1. En consecuencia, hay un número infinito de distribuciones X2.

  • El área bajo una curva ji-cuadrada y sobre el eje horizontal es 1.

  • Las distribuciones X2 no son simétricas. Tienen colas estrechas que se extienden a la derecha; esto es, están sesgadas a la derecha.

  • Cuando n>2, la media de una distribución X2 es n-1 y la varianza es 2(n-1).

  • El valor modal de una distribución X2 se da en el valor (n-3).

  • La siguiente figura ilustra tres distribuciones X2. Note que el valor modal aparece en el valor (n-3) = (gl-2).

    Ejemplo

    Suponga que los tiempos requeridos por un cierto autobús para alcanzar un de sus destinos en una ciudad grande forman una distribución normal con una desviación estándar.=1 minuto. Si se elige al azar una muestra de 17 tiempos, encuentre la probabilidad de que la varianza muestral sea mayor que 2.

    Solución

    Primero se encontrará el valor de ji-cuadrada correspondiente a s2=2 como sigue:

    El valor de 32 se busca adentro de la tabla en el renglón de 16 grados de libertad y se encuentra que a este valor le corresponde un área a la derecha de 0.01. En consecuencia, el valor de la probabilidad es P(s2>2)

    Tabla de distribución ji cuadrada

    Esta tabla presenta la distribución de probabilidad de ji-cuadrado para distintos valores de k y de x presentándolo con seis cifras decimales, separadas de tres en tres por un espacio en blanco para facilitar la lectura, en la fila superior están los valores de k, y en la columna de la izquierda los de x, donde se cruzan la columna de la k buscada y la fila de la x, se encuentra el valor de la probabilidad acumulada desde 0 a la x buscada.

    12




    Descargar
    Enviado por:Kaibil
    Idioma: castellano
    País: México

    Te va a interesar