Filosofía y Ciencia


La ciencia


La Ciencia

(En latín scientia, de scire, `conocer'), término que en su sentido más amplio se emplea para referirse al conocimiento sistematizado en cualquier campo, pero que suele aplicarse sobre todo a la organización de la experiencia sensorial objetivamente verificable. La búsqueda de conocimiento en ese contexto se conoce como `ciencia pura', para distinguirla de la `ciencia aplicada' —la búsqueda de usos prácticos del conocimiento científico— y de la tecnología, a través de la cual se llevan a cabo las aplicaciones. (Para más información, véanse los artículos individuales sobre la mayoría de las ciencias mencionadas a lo largo de este artículo).

Orígenes de la ciencia

Los esfuerzos para sistematizar el conocimiento se remontan a los tiempos prehistóricos, como atestiguan los dibujos que los pueblos del paleolítico pintaban en las paredes de las cuevas, los datos numéricos grabados en hueso o piedra o los objetos fabricados por las civilizaciones del neolítico. Los testimonios escritos más antiguos de investigaciones protocientíficas proceden de las culturas mesopotámicas, y corresponden a listas de observaciones astronómicas, sustancias químicas o síntomas de enfermedades —además de numerosas tablas matemáticas— inscritas en caracteres cuneiformes sobre tablillas de arcilla. Otras tablillas que datan aproximadamente del 2000 a.C. demuestran que los babilonios conocían el teorema de Pitágoras, resolvían ecuaciones cuadráticas y habían desarrollado un sistema sexagesimal de medidas (basado en el número 60) del que se derivan las unidades modernas para tiempos y ángulos (véase Sistema numérico; Numeración).

En el valle del Nilo se han descubierto papiros de una época similar que contienen información sobre el tratamiento de heridas y enfermedades, la distribución de pan y cerveza, y la forma de hallar el volumen de una parte de una pirámide. Algunas de las unidades de longitud actuales proceden de medidas egipcias y el calendario que empleamos es el resultado indirecto de observaciones astronómicas prehelénicas.

Orígenes de la teoría científica

El conocimiento científico en Egipto y Mesopotamia era sobre todo de naturaleza práctica, sin demasiada organización racional. Uno de los primeros sabios griegos que buscó las causas fundamentales de los fenómenos naturales fue el filósofo Tales de Mileto, en el siglo VI a.C., quien introdujo el concepto de que la Tierra era un disco plano que flotaba en el elemento universal, el agua. El matemático y filósofo Pitágoras, de época posterior, estableció una escuela de pensamiento en la que las matemáticas se convirtieron en una disciplina fundamental para toda la investigación científica. Los eruditos pitagóricos postulaban una Tierra esférica que se movía en una órbita circular alrededor de un fuego central. En Atenas, en el siglo IV a.C., la filosofía natural jónica y la ciencia matemática pitagórica se combinaron para producir las síntesis formadas por las filosofías lógicas de Platón y Aristóteles. En la Academia de Platón se subrayaba el razonamiento deductivo y la representación matemática; en el Liceo de Aristóteles primaban el razonamiento inductivo y la descripción cualitativa. La interacción entre estos dos enfoques de la ciencia ha llevado a la mayoría de los avances posteriores.

Durante la llamada época helenística, que siguió a la muerte de Alejandro Magno, el matemático, astrónomo y geógrafo Eratóstenes realizó una medida asombrosamente precisa de las dimensiones de la Tierra. El astrónomo Aristarco de Samos propuso un sistema planetario heliocéntrico (con centro en el Sol), aunque este concepto no halló aceptación en la época antigua. El matemático e inventor Arquímedes sentó las bases de la mecánica y la hidrostática (una rama de la mecánica de fluidos); el filósofo y científico Teofrasto fundó la botánica; el astrónomo Hiparco de Nicea desarrolló la trigonometría, y los anatomistas y médicos Herófilo y Erasístrato basaron la anatomía y la fisiología en la disección.

Después de que los romanos destruyeran Cartago y Corinto en el año 146 a.C., la investigación científica perdió impulso hasta que se produjo una breve recuperación en el siglo II d.C. bajo el emperador y filósofo romano Marco Aurelio. En esa época el sistema de Tolomeo —una teoría geocéntrica de los planetas (con centro en la Tierra) propuesta por el astrónomo Claudio Tolomeo— y las obras médicas del filósofo y médico Galeno se convirtieron en tratados científicos de referencia para la era posterior. Un siglo después surgió la nueva ciencia experimental de la alquimia a partir de la práctica de la metalurgia.

Sin embargo, por el año 300 la alquimia fue adquiriendo un tinte de secretismo y simbolismo que redujo los avances que sus experimentos podrían haber proporcionado a la ciencia.

Filosofía de la ciencia

Investigación sobre la naturaleza general de la práctica científica. La filosofía de la ciencia se ocupa de saber cómo se desarrollan, evalúan y cambian las teorías científicas, y si la ciencia es capaz de revelar la verdad de las entidades ocultas y los procesos de la naturaleza. Su objeto es tan antiguo y se halla tan extendido como la ciencia misma. Algunos científicos han mostrado un vivo interés por la filosofía de la ciencia y unos pocos, como Galileo, Isaac Newton y Albert Einstein, han hecho importantes contribuciones. Numerosos científicos, sin embargo, se han dado por satisfechos dejando la filosofía de la ciencia a los filósofos, y han preferido seguir 'haciendo ciencia' en vez de dedicar más tiempo a considerar en términos generales cómo 'se hace la ciencia'. Entre los filósofos, la filosofía de la ciencia ha sido siempre un problema central; dentro de la tradición occidental, entre las figuras más importantes anteriores al siglo XX destacan Aristóteles, René Descartes, John Locke, David Hume, Immanuel Kant y John Stuart Mill. Gran parte de la filosofía de la ciencia es indisociable de la epistemología, la teoría del conocimiento, un tema que ha sido considerado por casi todos los filósofos.

El problema de la inducción

Los resultados de la observación y experimentación suministran la evidencia para una teoría científica, pero no pueden demostrar que la teoría es correcta. Hasta la generalización empírica más modesta, por ejemplo que toda agua hierve a la misma temperatura, va más allá de lo que puede ser deducido de la evidencia en sentido estricto. Si las teorías científicas no expresaran más que la evidencia que suele sustentarlas, tendrían poca utilidad. No podrían ser utilizadas para predecir el curso de la naturaleza, y carecerían de poder explicativo.

El vínculo no demostrativo o inductivo entre la evidencia y la teoría plantea uno de los problemas fundamentales de la teoría del conocimiento, el problema de la inducción, dada su formulación clásica por David Hume, el filósofo escocés del siglo XVIII. Hume consideró simples predicciones basadas en observaciones pasadas, por ejemplo, un vaticinio como: el sol saldrá mañana, teniendo en cuenta que se ha observado que siempre salía en el pasado. La vida sería imposible sin anticipar el futuro, pero Hume construyó una argumentación excelente para mostrar que estas inferencias son indefendibles desde presupuestos racionales. Esta conclusión puede parecer increíble, pero la argumentación de Hume tiene todavía que ser contestada de un modo concluyente. Admitía que las deducciones inductivas han sido por lo menos razonablemente fiables hasta ahora, o no estaríamos vivos para considerar el problema, pero afirmaba que sólo podemos tener una razón para continuar confiando en la inducción si tenemos algún motivo para creer que la inducción seguirá siendo fiable en el futuro. Hume demostró entonces que tal razón no es posible. El nudo del problema es que pretender que la inducción será una garantía en el futuro es, en sí misma, una predicción y sólo podría ser justificada de manera inductiva, lo que llevaría a una cuestión de principio.

En concreto, mantener que la inducción quizá funcionará en el futuro porque ha resultado útil en el pasado es razonar en círculo, asumiendo la inducción para justificarla. Si esta argumentación escéptica es válida, el conocimiento inductivo parece imposible, y no hay un argumento racional que se pueda plantear para disuadir a alguien que opina, por ejemplo, que es más seguro salir de la habitación por las ventanas que por la puerta.

El problema de la inducción se relaciona de forma directa con la ciencia. Sin una respuesta a la argumentación de Hume, no hay razón para creer en ninguno de los aspectos de una teoría científica que vaya más allá de lo que, en realidad, se ha observado. El asunto no es que las teorías científicas no resulten nunca ciertas por completo: esto es o debería ser una verdad obvia. El tema es más bien que no tenemos ninguna razón para suponer, por ejemplo, que el agua que no hemos sometido a prueba hervirá a la misma temperatura que el agua que hemos probado. Los filósofos han realizado un continuo esfuerzo para resistir a esta conclusión escéptica. Algunos han tratado de demostrar que los modelos científicos para sopesar evidencias y formular inferencias son, de algún modo, racionales por definición; otros, que los éxitos pasados de nuestros sistemas inductivos son susceptibles de emplearse para justificar su uso futuro sin caer en círculos viciosos. Un tercer enfoque sostiene que, aunque no podamos demostrar que la inducción funcionará en el futuro, sí podemos demostrar que lo hará si algún método de predicción lo hace, por lo que es razonable utilizarlo. Mediante teorías más recientes, algunos filósofos han sostenido que la actual fiabilidad de las prácticas inductivas, algo que Hume no niega, basta para proporcionar conocimiento inductivo sin otro requerimiento que el que la fiabilidad esté justificada.

Karl Popper ha aportado una respuesta más radical al problema de la inducción, una solución que constituye la base de su influyente filosofía de la ciencia. De acuerdo con Popper, el razonamiento de Hume de que las inferencias son injustificables desde una perspectiva racional es correcto. Sin embargo, esto no amenaza la racionalidad de la ciencia, cuyas inferencias son, aunque parezca lo contrario, deductivas en exclusiva. La idea central de Popper es que mientras la evidencia nunca implicará que una teoría sea verdadera, puede rebatir la teoría suponiendo que sea falsa. Así, un número de cuervos negros no implica que todos lo cuervos sean negros, pero la presencia de un único cuervo blanco supone que la generalización es falsa. Los científicos pueden, de esta forma, saber que una teoría es falsa, sin recurrir a la inducción. Además, enfrentados a una elección entre dos teorías opuestas, pueden ejercer una preferencia racional si una de las teorías ha sido refutada pero la otra no; entonces es racional preferir una teoría que podría ser verdad respecto a una que se sabe es falsa. La inducción nunca entra en escena, de modo que el argumento de Hume pierde fuerza.

Esta ingeniosa solución al problema de la inducción se enfrenta con numerosas objeciones. Si fuera cierta, los científicos nunca tendrían ningún motivo para creer que alguna de sus teorías o hipótesis son siquiera correctas por aproximación o que alguna de las predicciones extraídas de ellas es verdad, ya que estas apreciaciones sólo podrían ser justificadas por vía inductiva. Además, parece que la posición de Popper ni siquiera permite a los científicos saber que una teoría es falsa, puesto que, según él, la evidencia que podría contradecir una teoría, puede no ser nunca reconocida como correcta. Por desgracia, las inferencias inductivas que los científicos plantean no parecen ni evitables ni justificables.

El problema de la descripción

Aunque la discusión de Hume sobre la justificación de la inducción representa un hito en la historia de la filosofía, sólo ofrece una cruda descripción de cómo, para bien o para mal, los métodos inductivos funcionan en realidad. Mantenía que la inferencia inductiva es sólo un hábito de formación. Al haber visto muchos cuervos negros, de modo tácito aplicamos la regla 'más de lo mismo' y suponemos que el próximo cuervo que encontremos será también negro. Esto, como es evidente, no hace justicia a la práctica inferencial de los científicos, ya que éstos infieren a partir de la observación de entidades de una clase para llegar a la existencia y comportamiento de entidades de una clase muy diferente y a menudo no observable. 'Más de lo mismo' no llevará a los científicos desde lo que se ve en el laboratorio a la existencia de los electrones o los campos electromagnéticos. ¿Cómo comprueban entonces los científicos sus teorías, sopesan la evidencia y establecen inferencias? Este es el problema de la descripción en contraste con el problema de la justificación de Hume.

El problema descriptivo puede parecer fácil de resolver: sólo hay que preguntar a los científicos que describan lo que hacen. Es una ilusión. Los científicos pueden ser eficaces sopesando evidencias, pero no son eficaces ofreciendo una declaración de principios que recoja cómo llegan a ellos. Esto no es más sorprendente que el hecho de que los nativos de habla inglesa sean incapaces de explicar los principios por los que diferencian las oraciones gramaticales de las no gramaticales. Lo más sorprendente es cuán difícil ha sido resolver el problema de la inducción incluso para los filósofos de la ciencia que han dedicado a ello su actividad.

Quizá la forma más corriente de mostrar cómo se comprueban las teorías sea mediante el modelo hipotético-deductivo, según el cual las teorías se comprueban examinando las predicciones que implican. La evidencia que muestra que una predicción es correcta, confirma la teoría; la evidencia incompatible con la predicción, rebate la teoría, y cualquier otra evidencia es irrelevante. Si los científicos tienen una evidencia suficiente que corrobora y una no evidencia que rebate, pueden inferir que la teoría examinada es correcta. Este modelo, aunque es aproximado, parece en principio ser un reflejo razonable de la práctica científica, pero está envuelto en dificultades concretas. La mayoría de éstas demuestran que el modelo hipotético-deductivo es demasiado permisivo, al tratar evidencias irrelevantes como si aportaran certezas materiales. Para mencionar tan sólo un problema, la mayoría de las teorías científicas no implican ninguna consecuencia observable por sí misma, sino sólo al relacionarse en conjunto con otras suposiciones de base. Si no hay alguna clase de restricción sobre las suposiciones admisibles, el modelo permitiría considerar cualquier observación como evidencia para casi cualquier teoría. Esto es un resultado absurdo, pero es difícil en extremo especificar las restricciones apropiadas.

Dadas las dificultades que afronta el modelo hipotético-deductivo, algunos filósofos han reducido sus miras y han intentado dar un modelo mejor de refuerzo inductivo para una serie de casos más limitada. El caso más sencillo es una generalización empírica del tipo 'todos los cuervos son negros'. Aquí parece claro que los cuervos negros apoyan la hipótesis, los cuervos no negros la refutan, y los no cuervos son irrelevantes. Aún así, esta modesta consideración entraña otros problemas. Supongamos que aplicamos el mismo tipo de consideración a la hipótesis un tanto exótica de que todas las cosas no negras no son cuervos. Los no negros no cuervos (flores blancas, por ejemplo) la apoyan, los cuervos no negros la refutan, y los objetos son irrelevantes. El problema surge cuando observamos que esta hipótesis equivale a la hipótesis original del cuervo; decir que todas las cosas no negras son no cuervos es sólo un modo poco usual de decir que todos los cuervos son negros. Entonces ¿cualquier evidencia que apoye una hipótesis apoya la otra? Esto nos deja, sin embargo, con la conclusión bastante extraña de que las flores blancas proporcionan la evidencia de que todos los cuervos son negros. Esta paradoja del cuervo parece un truco lógico, pero ha resultado muy difícil de resolver.


Explicación

Un reciente trabajo sobre el problema de los métodos de descripción inferencial en la ciencia ha tratado de evitar la debilidad del modelo hipotético- deductivo yendo más allá de las relaciones lógicas para responder a la conexión de la evidencia con la teoría. Algunas consideraciones intentan describir cómo la plausibilidad de teorías e hipótesis puede variar conforme se va avanzando en las comprobaciones, y han enlazado esta idea con un cálculo formal de probabilidades. Otras apelan al contenido específico de las hipótesis sometidas a comprobación, en especial las afirmaciones causales que hacen muchas de ellas. En el siglo XIX, John Stuart Mill dio cuenta de las inferencias desde los efectos a las causas que puede ser extendida para aportar un modelo de inferencia científica. Uno de los procedimientos por el que se ha intentado esa expansión ha sido recurriendo al concepto de explicación. La idea básica del modelo de inducción para la mejor explicación es que los científicos infieren desde la evidencia válida a la hipótesis que, de ser correcta, proporcionaría la mejor explicación de esa evidencia.

Si la inferencia para la mejor explicación debe de ser algo más que un eslogan, sin embargo, se requiere alguna consideración independiente de explicación científica. El punto de partida para la mayoría del trabajo filosófico contemporáneo sobre la naturaleza de la explicación científica es el modelo deductivo-nomológico, según el cual una explicación científica es una deducción de una descripción del fenómeno para ser explicada desde un conjunto de premisas que incluye, por lo menos, una ley de la naturaleza. Así, se podría explicar por qué sube el mercurio en un termómetro señalando el ascenso de la subida en la temperatura a partir de una ley que relaciona la temperatura y el volumen de los metales. El tema aquí es saber qué hace que algo sea una ley de la naturaleza, otro de los tópicos centrales de la filosofía de la ciencia. No todas las generalizaciones verdaderas son leyes de la naturaleza. Por ejemplo, la afirmación de que todas las esferas de oro tienen un diámetro de menos de diez millas es una verdad presumible pero no es una ley. Las genuinas leyes de la naturaleza parecen tener un tipo de necesidad de la que carece la afirmación sobre las esferas de oro. Describen no sólo cómo funcionan las cosas en realidad sino cómo, de algún modo, deben funcionar. Sin embargo, está lejos de ser evidente cómo tendría que articularse esta noción de necesidad.

Otra dificultad para el modelo deductivo-nomológico de explicación es que, al igual que el modelo hipotético-deductivo de comprobación, con el cual mantiene una notable similitud estructural, este modelo también es demasiado permisivo. Por ejemplo, el periodo (la duración de una oscilación) de un péndulo determinado puede deducirse de la ley que se refiere al periodo y recorrido de los péndulos en general, junto con el recorrido de ese péndulo determinado. El recorrido del péndulo es considerado de modo habitual como explicativo del periodo. Sin embargo, la deducción puede llevarse a cabo en el sentido opuesto: es posible calcular el recorrido de un péndulo si se conoce su periodo. Pero el periodo no está considerado por lo común como explicativo del recorrido del péndulo. De este modo, mientras que la deducción funciona en ambos sentidos, se considera que la explicación va sólo en un único sentido. Dificultades de esta índole han llevado a algunos filósofos a desarrollar procesos causales de explicación, según los cuales explicamos los acontecimientos aportando información sobre sus procesos causales. Este enfoque es atractivo, pero pide un análisis de causalidad, un proyecto que se enfrenta a muchas de las mismas dificultades que tenía analizar las leyes de la naturaleza. Además, se necesita decir más sobre qué causas de un acontecimiento lo explican. El Big Bang es presumiblemente parte de la historia causal de cada acontecimiento, pero no aporta una explicación adecuada para la mayoría de ellos. Una vez más, hay un problema de permisividad excesiva.


Realismo e instrumentalismo

Uno de los objetivos de la ciencia es salvar los fenómenos, construir teorías que supongan una descripción correcta de los aspectos observables del mundo. De particular importancia es la capacidad para predecir lo que es observable pero todavía no es observado, ya que una predicción precisa hace factible la aplicación de la ciencia a la tecnología. Lo que resulta más controvertido es si la ciencia debe también aspirar a la verdad sobre aquello que no es observable, sólo por comprender el mundo, incluso sin un propósito práctico. Aquellos que pretenden que la ciencia debería, y que así lo hace, ocuparse de revelar la estructura oculta del mundo son conocidos como realistas. Para éstos, las teorías tratan de describir esa estructura. Por oposición, aquellos que dicen que la labor de la ciencia es sólo salvar los fenómenos observables son conocidos como instrumentalistas, ya que para ellos las teorías no son descripciones del mundo invisible sino instrumentos para las predicciones sobre el mundo observable. La disputa entre realistas e instrumentalistas ha sido un tema constante en la historia de la filosofía de la ciencia.

Los científicos realistas no afirman que todo en la ciencia actual es correcto pero, como era de esperar, afirman que las mejores teorías actuales son poco más o menos verdaderas, que la mayoría de las entidades a las que se refieren existen en realidad, y que en la historia de la ciencia las últimas teorías en un campo concreto han estado por lo común más próximas a la verdad que las teorías que sustituían. Para los realistas, el progreso científico consiste sobre todo en generar descripciones cada vez más amplias y exactas de un mundo en su mayor parte invisible.

Algunos instrumentalistas niegan que las teorías puedan describir aspectos no observables del mundo sobre la base de que no se pueden llenar de significado las descripciones de lo que no puede ser observado. Según esta idea, las teorías de alto nivel son ingenios de cálculo sin significado literal: no son más descripciones del mundo que lo que son los circuitos de una calculadora electrónica. Otros instrumentalistas han afirmado que las teorías son descripciones, pero sólo del mundo observable. Hablar de partículas atómicas y campos gravitatorios sólo es en realidad una taquigrafía de descripciones de interpretaciones punteras y un movimiento observable. La versión contemporánea más influyente del instrumentalismo, conocida como empirismo constructivo, adopta una tercera vía. El significado de las teorías tiene que ser creído literalmente. Si una teoría parece contar una historia sobre partículas invisibles, entonces esa es la historia que se cuenta. Los científicos, sin embargo, nunca tienen derecho o necesidad de creer que esas historias son verdad. Todo lo más que puede o necesita ser conocido es que los efectos observables de una teoría —pasada, presente y futura— son verdaderos. La verdad del resto de la teoría es cómo pueda ser: toda la cuestión es que la teoría cuenta una historia que produce sólo predicciones verdaderas acerca de lo que, en principio, pudiera ser observado.

El debate entre realistas e instrumentalistas ha generado argumentos por parte de ambas escuelas. Algunos realistas han montado un razonamiento de no milagro. Realistas e instrumentalistas están de acuerdo en que nuestras mejores teorías en las ciencias físicas han tenido un notable éxito de predicción. El realista mantiene que este éxito sería un milagro si las teorías no fueran por lo menos verdaderas por aproximación. Desde un punto de vista lógico es posible que una historia falsa en su totalidad sobre entidades y procesos no observables pudiera suponer todas esas predicciones verdaderas, pero creer esto es bastante improbable y, por lo tanto, irracional. Planteado el supuesto de que a una persona se le da un mapa muy detallado, cuyo contenido describe con gran detalle el bosque en el que se encuentra, incluso muchos desfiladeros y picos de montañas inaccesibles. Examina el mapa contrastando los datos en diferentes lugares y, en cada caso, lo que ve es justo como lo pinta el mapa. Queda la posibilidad de que el mapa sea incorrecto por completo en las zonas que no ha examinado, pero esto no resulta verosímil. El realista mantiene que la situación es análoga para toda teoría científica que haya sido bien comprobada.


Los instrumentalistas han hecho numerosas objeciones al razonamiento del 'no milagro'. Algunos han afirmado que incurre en la petición de principio, tanto como el argumento considerado con anterioridad, de que la deducción funcionará en el futuro porque ha funcionado en el pasado. Inferir del éxito observado de una teoría científica la verdad de sus afirmaciones sobre los aspectos no observables del mundo es utilizar en concreto el modo de deducción cuya legitimidad niegan los instrumentalistas. Otra objeción es que la verdad de la ciencia actual no es en realidad la mejor explicación de su éxito de observación. Según esta objeción, Popper estaba en lo cierto, al menos, cuando afirmó que la ciencia evoluciona a través de la supresión de las teorías que han fracasado en la prueba de la predicción. No es de extrañar que se piense, por lo tanto, que las teorías que ahora se aceptan han tenido éxito en cuanto a la predicción: si no lo hubieran tenido, ahora no las aceptaríamos. Así, la hipótesis que mantiene que nuestras teorías son ciertas no necesita explicar su éxito de predicción. Por último, algunos instrumentalistas recurren a lo que se conoce como la indeterminación de la teoría por los datos. No importa el grado de validez de la evidencia, sabemos que hay en principio innumerables teorías, incompatibles entre sí pero todas compatibles con esa evidencia. Como mucho, una de esas teorías puede ser verdadera. Tal vez si la objeción resulta válida, es poco probable que la teoría elegida como eficaz sea la verdadera. Desde este punto de vista, lo que sería milagroso no es que las teorías de éxito a las que llegan los científicos sean falsas, sino que sean verdaderas.

Una de los razonamientos recientes más populares de los instrumentalistas es la 'inducción pesimista'. Desde el punto de vista de la ciencia actual, casi todas las teorías complejas con más de cincuenta años pueden ser entendidas como falsas. Esto se oculta a menudo en la historia de la ciencia que presentan los libros de texto de ciencia elementales, pero, por ejemplo, desde el punto de vista de la física contemporánea, Kepler se equivocaba al afirmar que los planetas se mueven en elipses, y Newton al sostener que la masa de un objeto es independiente de su velocidad. Pero si todas las teorías pasadas han sido halladas incorrectas, entonces la única deducción razonable es que todas, o casi todas, las teorías actuales serán consideradas erróneas de aquí a otro medio siglo. En contraste con esta discontinuidad en la historia de las teorías, según el instrumentalismo se ha producido un crecimiento constante y sobre todo acumulativo en el alcance y precisión de sus predicciones observables. Cada vez han llegado a ser mejores salvando los fenómenos, su único cometido apropiado.

Se han planteado varias respuestas a la inducción pesimista. La mayoría de los realistas han aceptado tanto la premisa de que las teorías del pasado han sido falsas y la conclusión de que las teorías actuales serán quizá falsas también. Sin embargo, han insistido en que todo esto es compatible con la afirmación central realista de que las teorías tienden a mejorar las descripciones del mundo respecto a aquéllas a las que reemplazan. Algunos realistas también han acusado a los instrumentalistas de exagerar el grado de discontinuidad en la historia de la ciencia. Se puede cuestionar también la validez de una deducción desde el grado de falsedad pretérito al actual. De acuerdo con los realistas, las teorías actuales han sustituido a sus predecesoras porque ofrecen un mejor tratamiento de la evidencia cada vez más amplio y preciso; por eso está poco claro por qué la debilidad de las viejas teorías debería ir en contra de las que las sucedan.


La ciencia

Objetividad y relativismo

Aunque realistas e instrumentalistas discrepan sobre la capacidad de la ciencia para describir el mundo invisible, casi todos coinciden en que la ciencia es objetiva, porque descansa sobre evidencias objetivas. Aunque algunos resultados experimentales son inevitablemente erróneos, la historia de la evidencia es en gran parte acumulativa, en contraste con la historia de las teorías de alto nivel. En resumen, los científicos sustituyen las teorías pero aumentan los datos. Sin embargo, esta idea de la objetividad y autonomía de la evidencia observacional de las teorías científicas ha sido criticada, sobre todo en los últimos 30 años.

La objetividad de la evidencia ha sido rechazada partiendo de la premisa de que la evidencia científica está, de manera inevitable, contaminada por las teorías científicas. No es sólo que los científicos tiendan a ver lo que quieren ver, sino que la observación científica es sólo posible en el contexto de presuposiciones teóricas concretas. La observación es "teoría cargada". En una versión extrema de esta idea, las teorías no pueden ser probadas, ya que la evidencia siempre presupondrá la misma teoría que se supone tiene que probar. Versiones más moderadas permiten alguna noción de la prueba empírica, pero siguen introduciendo discontinuidades históricas en la evidencia para compararla con las discontinuidades a nivel teórico. Si todavía es posible hacer algún juicio del progreso científico, no puede ser en términos de acumulación de conocimiento, ya se trate de un enfoque teórico o desde el punto de vista de la observación.

Si la naturaleza de la evidencia cambia conforme cambian las teorías científicas, y la evidencia es nuestro único acceso a los hechos empíricos, entonces quizá los hechos también cambien. Este es el relativismo en la ciencia, cuyo representante reciente más influyente es Thomas Kuhn. Al igual que el gran filósofo alemán del siglo XVIII Immanuel Kant, Kuhn mantiene que el mundo que la ciencia investiga debe ser un mundo hasta cierto punto constituido por las ideas de aquellos que lo estudian. Esta noción de la constitución humana del mundo no es fácil de captar. No ocurre lo mismo que en la visión idealista clásica que explica que los objetos físicos concretos sólo son en realidad ideas reales o posibles, implicando que algo es considerado como objeto físico o como un objeto de cierto tipo, por ejemplo una estrella o un planeta, sólo en la medida en la que la gente así los categoriza. Para Kant, la contribución que parte de la idea y lleva a la estructura del mundo es sustancial e inmutable. Consiste en categorías muy generales tales como espacio, tiempo y causalidad. Para Kuhn, la contribución es asimismo sustancial, pero también muy variable, ya que la naturaleza de la contribución viene determinada por las teorías y prácticas concretas de una disciplina científica en un momento determinado. Cuando esas teorías y prácticas cambian, por ejemplo, en la transición desde la mecánica newtoniana a las teorías de Einstein, también cambia la estructura del mundo sobre la que tratan este conjunto de teorías. La imagen de los científicos descubriendo más y más sobre una realidad idea independiente aparece aquí rechazada por completo.

Aunque radical desde el plano metafísico, el concepto de ciencia de Kuhn es conservador desde una perspectiva epistemológica. Para él, las causas del cambio científico son, casi de forma exclusiva, intelectuales y pertenecen a una reducida comunidad de científicos especialistas. Hay, sin embargo, otras opciones actuales de relativismo sobre la ciencia que rechazan esta perspectiva de carácter interno, e insisten en que las principales causas del cambio científico incluyen factores sociales, políticos y culturales que van mucho más allá de los confines del laboratorio. Ya que no hay razón para creer que estos factores variables conducen al descubrimiento de la verdad, esta idea social constructivista de la ciencia es quizás casi más hostil al realismo científico que lo es la posición kuhniana.

Los realistas científicos no han eludido estos desafíos. Algunos han acusado a los relativistas de adoptar lo que viene a ser una posición de autocontradicción. Si, como se afirma, no hay nada que sea verdad, esta afirmación tampoco puede ser entonces verdadera. Los realistas han cuestionado también la filosofía del lenguaje latente detrás de la afirmación de Kuhn de que las sucesivas teorías científicas se refieren a diferentes entidades y fenómenos, manteniendo que el constructivismo social ha exagerado la influencia a largo plazo de los factores no cognitivos sobre la evolución de la ciencia. Pero el debate de si la ciencia es un proceso de descubrimiento o una invención es tan viejo como la historia de la ciencia y la filosofía, y no hay soluciones claras a la vista. Aquí, como en otras partes, los filósofos han tenido mucho más éxito en poner de manifiesto las dificultades que en resolverlas. Por suerte, una valoración de cómo la práctica científica resiste una explicación puede iluminar por sí misma la naturaleza de la ciencia.

El Quehacer Cientifico

La investigación científica es realizada por personas que aplican el método científico. En las ciencias así como en otras áreas del saber. El científico busca nuevos conocimientos en forma sistemática y comunica sus hallazgos a otros investigadores. Para ser científico se requiere entrenamiento específico y tener o adquirir ciertas características personales. En la actualidad, es necesario formar más investigadores y fomentar una actitud más científica en los alumnos y profesores.

La Ciencia y Su Metodo (El Metodo Cientifico)

A fin de conocer la naturaleza en su más fina expresión y de conocer todo lo que le rodea, el hombre ha desarrollado herramientas intelectuales y tecnológicas que le permiten obtener de manera objetiva la información necesaria. Esa es la actividad científica. Aunque ya en tiempos de los antiguos Griegos como Aristóteles y Platón se acostumbraba observar la naturaleza, no se aceptaba la prueba experimental. Fue hasta la época del Renacimiento y tiempos posteriores en que deja de existir una "ciencia filosófica" y grandes pensadores y científicos como René Descartes (1596-1650), Francis Bacon (1561-1626) e Issac Newton (1642-1727) proponen al mundo la esencia y la práctica del llamado método científico.

La obra de Descartes fue fundamental para comprender los orígenes de la ciencia moderna ya que logró la división entre el mundo racional y el mundo material. En efecto, el racionalismo cartesiaños mostró dos características: su exhaustiva revisión de la metodología del conocimiento y su inicial materialización. Por su parte, Bacon se preocupó por la necesidad de un proceder científico más experimental y menos especulativo. Su obra principal Novum Organum, 1620, constituye el primer gran intento por sistematizar el método de la ciencia y por tal razón es considerado el fundador del método experimental e inductivo. Finalmente, la aplicación del método científico se observa en su máxima expresión con Newton quien ha sido el científico más grande de todos los tiempos por sus numerosas contribuciones al conocimiento universal (en el caso de la biología el más conocido es Darwin). Otros grandes científicos que han desarrollado el método científico actual han sido entre otros, el empirista John Locke quien aprendió a conjugar el rigor del método experimental con una exitosa aplicación de las matemáticas y quien a su vez fue continuador de la obra de Gassendi que insistió en el carácter probabilístico de las conclusiones derivadas de la observación de los fenómenos naturales (Carrillo Gamboa, 1983).


El denominado método científico permite que el investigador realice un estilo peculiar de trabajo que lo distingue de otros pensadores. Este método no es en si una receta infalible para los descubrimientos pero si es una guía para obtener de manera sistemática y ordenada los conocimientos. De la misma manera, no proporciona un plan detallado para explorar lo desconocido. Mas bien, el método científico es una actitud, una filosofía que puede ser utilizada por los científicos de todas las especialidades y de talentos de todas clases. De hecho, la gran utilidad del método antes mencionado es que propicia que los científicos que recogen datos y aquellos que construyen teorías se complementen unos con otros, al permitir su interacción y la discusión de las ideas. Sin embargo, el método científico, a pesar de todas sus virtudes, no puede substituir a la creatividad, la imaginación, la inspiración e incluso a la buena suerte tan necesarias para lograr descubrimientos originales. El desarrollo del método desde el punto de vista histórico, nos muestra su propia evolución. Francis Bacon en un principio, al meditar sobre lo que era el conocimiento y como adquirirlo propuso la siguiente regla: observa, mide , explica y luego verifica. Actualmente, existe aun discusión sobre el método mas adecuado pero se acepta que inicialmente es necesario identificar el problema de interés y después plantear una conclusión temporal que es llamada la hipótesis de trabajo.

Posteriormente, el científico plantea los experimentos necesarios para comprobar o descartar la veracidad de la hipótesis. Al realizar tales experimentos, el investigador selecciona los métodos mas adecuados para realizarlos y también los procedimientos para evaluar los resultados obtenidos. Finalmente, se analizan los datos y se comparan con los obtenidos por otros autores para evaluar la originalidad de los hallazgos y también para decidir si se acepta o rechaza la hipótesis inicial (Rosenblueth , 1983; Rusell, 1982).

Se han hecho algunas adiciones al método científico original. Entre ellas algunas aportaciones al método de inferencia inductiva de Francis Bacon. Un ejemplo de tales aportaciones es el método denominado fuerte inferencia y consiste en la aplicación sistemática de los siguientes pasos: diseñar o considerar hipótesis alternativas y realizar experimentos cruciales que ayuden a descartar las hipótesis (Platt , 1964).

Cuando los resultados experimentales obtenidos son reproducibles en diferentes modelos de estudio y se conoce la influencia sobre ellos de distintas condiciones experimentales, los científicos llegan a postular la existencia de teorías. Si estas son lo bastante sólidas y parecen ser aplicables a todo el universo conocido pasan a la categoría de leyes naturales.

En la ciencia actual no se acepta que haya leyes naturales comunes a todos los seres vivos. Por el contrario, existen una serie de teorías e hipótesis de trabajo que ayudan a dirigir el trabajo de los científicos. Las principales teorías son: de la evolución, de la herencia, de la homeostasis y la celular. Sin embargo , no todas han permanecido estables. Un ejemplo de lo anterior seria la teoría celular que señala que todos los organismos vivos están compuestos por al menos una célula; dicha teoría se propuso en 1838 con la suposición de que todas las células eran microscópicas.

Hace algunos años esta teoría se modifico al encontrarse bacterias (Epolupiscium fishelsoni ) de medio milímetro de largo dentro de un pez de aguas australianas y al encontrarse que un alga marina (Caulerpa) que mide casi un metro de longitud es en realidad una sola célula gigante con raíces , tallos y hojas, por lo que se le considera el organismo unicelular mas grande del mundo, lo que contradice la creencia de que los organismos deben ser multicelulares para tener mayor tamaño y mayor complejidad funcional.


Tampoco los dogmas van con las ciencias. En un tiempo se propuso que toda la información genética iba dirigida unidireccionalmente del ADN al ARN y de ahí a las proteínas, lo que fue conocido como el dogma central de la biología molecular. Sin embargo, en 1970 se reporto a la transcriptasa reversa de un retrovirus que logra pasar la información genética contenida en el ARN al ADN. De la misma manera, en la misma década se encontró que el ADN no era una unidad estable y sencilla sino que es capaz de transformarse, de reordenar sus partes y de incorporar partes de otros genes.

La ciencia
Por otra parte, la serendipia, que es la capacidad de hacer descubrimientos por accidente y sagacidad, cuando se esta buscando otra cosa, es decir, los hallazgos por casualidad que pueden ser reproducidos experimentalmente, si son validos y han sido muy útiles para incrementar el avance en el conocimiento de los seres vivos y en la biomedicina (Perez-Tamayo, 1980). Entre los numerosos ejemplos se podría citar el descubrimiento de la penicilina por Alexander Fleming en 1929, quien fue capaz de darse cuenta de su descubrimiento a pesar de que seguramente el no era el primer científico que se encontraba con hongos en sus cultivos bacteriañoss. Fleming logro convertir su observación casual en verdadera ciencia cuando sometió a la experimentación sus hallazgos iniciales. Después de que observo la lisis de las colonias de estafilococos ejercida aparentemente por un hongo que creció junto a las bacteria, supuso que existía una substancia bacteriolítica que era producida por ese hongo y que difundía hacia aquellas. Demostró que el medio de cultivo en que había sido crecido por una o dos semanas el hongo aislado tenia la propiedad bactericida y bacteriolítica la cual era efectiva contra las bacterias patógenas mas comunes. Finalmente, realizo el paso crucial: comunico a la comunidad científica sus descubrimientos en la revista Británica de patología experimental.

Clasificación General de las Ciencias

Originalmente el conocimiento de la naturaleza era en gran medida la observación e interrelación de todas las experiencias, sin establecer divisiones. Los eruditos pitagóricos sólo distinguían cuatro ciencias: aritmética, geometría, música y astronomía. En la época de Aristóteles, sin embargo, ya se reconocían otros campos: mecánica, óptica, física, meteorología, zoología y botánica. La química permaneció fuera de la corriente principal de la ciencia hasta la época de Robert Boyle, en el siglo XVII, y la geología sólo alcanzó la categoría de ciencia en el siglo XVIII. Para entonces el estudio del calor, el magnetismo y la electricidad se había convertido en una parte de la física. Durante el siglo XIX los científicos reconocieron que las matemáticas puras se distinguían de las otras ciencias por ser una lógica de relaciones cuya estructura no depende de las leyes de la naturaleza. Sin embargo, su aplicación a la elaboración de teorías científicas ha hecho que se las siga clasificando como ciencia.

Las ciencias naturales puras suelen dividirse en ciencias físicas y químicas, y ciencias de la vida y de la Tierra. Las principales ramas del primer grupo son la física, la astronomía y la química, que a su vez se pueden subdividir en campos como la mecánica o la cosmología. Entre las ciencias de la vida se encuentran la botánica y la zoología; algunas subdivisiones de estas ciencias son la fisiología, la anatomía o la microbiología. La geología es una rama de las ciencias de la Tierra.

Sin embargo, todas las clasificaciones de las ciencias puras son arbitrarias. En las formulaciones de leyes científicas generales se reconocen vínculos que relacionan las ciencias entre sí. Se considera que estas relaciones son responsables de gran parte del progreso actual en varios campos de investigación especializados, como la biología molecular y la genética. Han surgido varias ciencias interdisciplinares, como la bioquímica, la biofísica, las biomatemáticas o la bioingeniería, en las que se explican los procesos vitales a partir de principios físico-químicos. Los bioquímicos, por ejemplo, sintetizaron el ácido desoxirribonucleico (ADN) (véase Ácidos nucleicos); la cooperación de biólogos y físicos llevó a la invención del microscopio electrónico, que permite el estudio de estructuras poco mayores que un átomo. Se prevé que la aplicación de estos métodos interdisciplinares produzca también resultados significativos en el terreno de las ciencias sociales y las ciencias de la conducta.

Las ciencias aplicadas incluyen campos como la aeronáutica, la electrónica, la ingeniería y la metalurgia —ciencias físicas aplicadas— o la agronomía y la medicina —ciencias biológicas aplicadas. También en este caso existe un solapamiento entre las ramas. Por ejemplo, la cooperación entre la iatrofísica (una rama de la investigación médica basada en principios de la física) y la bioingeniería llevó al desarrollo de la bomba corazón-pulmón empleada en la cirugía a corazón abierto y al diseño de órganos artificiales como cavidades y válvulas cardiacas, riñones, vasos sanguíneos o la cadena de huesecillos del oído interno. Este tipo de avances suelen deberse a las investigaciones de especialistas procedentes de diversas ciencias, tanto puras como aplicadas. La relación entre teoría y práctica es tan importante para el avance de la ciencia en nuestros días como en la época de Galileo. Véase también Filosofía de la ciencia.

La ciencia
Bibliografía

Articulo sonbre la Ciencia, origenes y distinciones.

Enciclopedia Encarta 99

Microsoft Corporation. 1998

EL QUEHACER DEL CIENTÍFICO EN LA BIOLOGÍA

Luis Fernando Anaya Velázquez

Instituto de Investigación en Biología Experimental, Facultad de Química.

Universidad de Guanajuato.

La ciencia




Descargar
Enviado por:Djheric O Codetel
Idioma: castellano
País: República Dominicana

Te va a interesar