Industria y Materiales


Instrumentación básica

Instituto Tecnológico de Chihuahua

Metrología y Normalización

INSTRUMENTACION BASICA

  1. Características de los equipos de medición según su tipo:
  1. Instrumentos eléctricos

La importancia de los instrumentos eléctricos de medición es incalculable, ya que mediante el uso de ellos se miden e indican magnitudes eléctricas, como corriente, carga, potencial y energía, o las características eléctricas de los circuitos, como la resistencia, la capacidad, la capacitancia y la inductancia. Además que permiten localizar las causas de una operación defectuosa en aparatos eléctricos en los cuales, como es bien sabido, no es posible apreciar su funcionamiento en una forma visual, como en el caso de un aparato mecánico.

La información que suministran los instrumentos de medición eléctrica se da normalmente en una unidad eléctrica estándar: ohmios, voltios, amperios, culombios, henrios, faradios, vatios o julios.

Unidades eléctricas, unidades empleadas para medir cuantitativamente toda clase de fenómenos electrostáticos y electromagnéticos, así como las características electromagnéticas de los componentes de un circuito eléctrico. Las unidades eléctricas empleadas en técnica y ciencia se definen en el Sistema Internacional de unidades. Sin embargo, se siguen utilizando algunas unidades más antiguas.

  1. Instrumentos mecánicos

APARATOS OPTICOS PARA LA MEDICION DE LA RUGOSIDAD:Se reservan generalmente para uso de los laboratorios y salas de metrología, por la delicadeza de su manejo.

BANCOS PARA MEDIR Ó MAQUINAS PARA MEDIR LONGITUDES: Estas maquinas están destinadas fundamentalmente a la medición de longitudes, aun cuando mediante accesorios adecuados pueden algunas de ellas utilizarse también para mediciones angulares.

BLOQUES PATRON: Estas herramientas se usan para efectuar operaciones de calibración, de precisión y para calibrar otras herramientas de medición.

COMPARADORES: Son amplificadores que permiten efectuar la medición de una longitud por comparación, después de ser calibrada.

COMPARADORES DE AMPLIACION MECANICA: También conocidos como comparadores de contacto como los tipos mas corrientes son los de:

-ampliación por engranes

-ampliación por palanca.

COMPARADORES DE AMPLIACION OPTICA: El fundamento del sistema de aplicación utilizada en estos aparatos es el de palanca de reflexión.

COMPARADORES UNIVERSALES:Son aparatos de construcción mas resientes y que, debido a su reducción de tamaño y a la disposición de su palpador, permite mediciones en lugares difíciles e incluso imposible para los comparadores normales.

MEDIDOR DE ANILLOS EN EQUILIBRIO: Es un medidor del momento de torsión radial que utiliza un cuerpo anular hueco para convertir la presión diferencial correspondiente a una diferencial en la presión estática, en la rotación que se trasmite al registrador o indicador.

MANOMETRO DE PESO MUERTO:Consta de un embolo maquinado con exactitud que se introduce de ajuste apretado, los dos de área de la sección transversal conocida.

MANOMETRO:El manometro que mas se usa es el de tipo de tubo en U , lleno parcialmente de liquido apropiado. Este tipo de manometro es uno de los mas usados para medir presiones, fluidos en condiciones de estado estacionario; en general se desprecia los efectos por capilaridad.

  1. Instrumentos hidráulicos

Instrumentos de Medición para la Hidráulica

Limnímetros de punta y gancho con escala vernier H1–1/H1–2/H1–3

Limnímetros de punta y gancho electrónicos H1–7/H1–8

Manómetros de agua abierta H12–1

Manómetros de agua presurizada H12–2

Manómetros de mercurio H12–3/H12–4

Manómetros de queroseno H12–5

Medidores electrónicos de presión H12–8/H12–9

Tubos de Pitot H30

Medidor de turbulencia y velocidad H32

Medidor de velocidad de hélice H33

Sistema de sondas para medición de ondas H40

  1. Instrumentos neumáticos

Los instrumentos de medición neumáticos pertenecen a la clasificación de instrumentos de medición de Acuerdo al principio de operación

Estos tipos de instrumentos requieren de aire o un gas para su funcionamiento.

Algunos ejemplos de Instrumentos Neumáticos son:

- Los vaumanometros:

El baumanómetro es un instrumento que permite medir la fuerza que ejerce la sangre sobre las paredes de las arterias, su uso es de gran importancia para el diagnóstico médico, ya que permite detectar alguna anomalía relacionada con la presión sanguínea y el corazón.

- Calibradores de llantas:

Este es usado para poder medir el nivel de inflado de las llantas.

  1. Ejemplos representativos de la simbología de instrumentación o simbología de instrumentos

 

La indicación de los símbolos de varios instrumentos o funciones han sido aplicados en las típicas formas. El uso no implica que la designación o aplicaciones de los instrumentos o funciones estén restringidas en ninguna manera. Donde los símbolos alternativos son mostrados sin una preferencia, la secuencia relativa de los números no implica una preferencia.

Un símbolo distintivo cuya relación con el lazo es simplemente aparentar que un diagrama no necesita ser etiquetado individualmente. Por ejemplo una placa con orificio o una válvula de control que es parte de un sistema más largo no necesita ser mostrado con un número de etiqueta en un diagrama. También, donde hay un elemento primario conectado a otro instrumento en un diagrama, hace uso de un símbolo para representar que el elemento primario en un diagrama puede ser opcional.

 Las líneas de señales pueden ser dibujadas en un diagrama enteramente o dejando la parte apropiada de un símbolo en cualquier ángulo. La función de los designadores de bloque y los números de las etiquetas podrían ser siempre mostrados con una orientación horizontal. Flechas direccionales podrían ser agregadas a las líneas de las señales cuando se necesite aclarar la dirección del flujo para información. La aplicación de flechas direccionales facilita el entendimiento de un sistema dado.

 Eléctrico, neumático o cualquier otro suministro de energía para un instrumento no se espera que sea mostrado, pero es esencial para el entendimiento de las operaciones de los instrumentos en un lazo de control.

La secuencia en cada uno de los instrumentos o funciones de un lazo están conectados en un diagrama y pueden reflejar el funcionamiento lógico o información acerca del flujo, algunos de estos arreglos no necesariamente corresponderán a la secuencia de la señal de conexión. Un lazo electrónico usando una señal analógica de voltaje requiere de un cableado paralelo, mientras un lazo que usa señales de corriente analógica requiere de series de interconexión. El diagrama en ambos casos podría ser dibujado a través de todo el cableado, para mostrar la interrelación funcional claramente mientras se mantiene la presentación independiente del tipo de instrumentación finalmente instalado.

 

Instrumento Discreto

Display Compartido, Control Compartido

Función de computadora

Control Lógico Programable

 Descripción de cómo los círculos indican la posición de los instrumentos.

 

Los símbolos también indican la posición en que están montados los instrumentos. Los símbolos con o sin líneas nos indican esta información. Las líneas son variadas como son: una sola línea, doble línea o líneas punteadas.

  

 

Montado en Tablero

Normalmente accesible al operador

 

Montado en Campo

Ubicación Auxiliar.

Normalmente accesible al operador.

Instrumento Discreto o Aislado

Display compartido, Control compartido.

Función de Computadora

Control Lógico Programable

 

  1. Funcionamiento y aplicación de instrumentos por inducción

Los instrumentos de inducción funcionan a partir del campo magnético producido por dos electroimanes sobre un elemento móvil metálico (corrientes de Foucault). La medida es proporcional al producto de las corrientes de cada electroimán y por lo tanto, pueden utilizarse tanto en corriente continua como en corriente alterna. Se utilizan habitualmente para la medida de energia electrica.

Medidor de humedad de maderas por inducción

Este medidor de humedad en madera, digital, es pequeño de tamaño, liviano y fácil llevar.
Aunque complejo y avanzado es muy conveniente el uso y servicio que presta.
Su calidad y precisión permitirá muchos años de uso si se siguen las técnicas operatorias apropiadas indicadas en el manual. Es de aplicación en muchos tipos de industrias.

Principales características

Dispone de un micro procesador con circuito LSI lo que le confiere una alta resolución y tiempos de lectura muy breves.

Otorga lecturas exactas sin errores.

El peso y tamaño es compacto y el funcionamiento muy fácil.

Los componentes utilizados son de calidad duradera y su cuerpo principal de ABS le da peso liviano y gran resistencia.

Su formato externo se adapta cómodamente a la mano.

Ampliamente usado para medir la humedad de maderas, de materiales de fibra de madera, los artículos de madera, el algodón, el tabaco, papel y similares etc.

Dispone de corrección de valores ajustable según el tipo de madera a controlar.

Es de aplicación en muchos tipos de industrias.

  1. Principios de funcionamiento y aplicación de girómetros y termómetros

Un higrómetro o humidimetro es un aparato que mide la humedad relativa del aire en base al cambio de largo de un pelo que no tiene grasa, que está de acuerdo con el contenido de vapor de agua en el aire, el alargamiento o acortamiento del pelo es transmitido por medio de un sistema de palanca, al indicador de una escala graduada en porcentaje de humedad relativa. Higrómetro Un higrómetro es un instrumento que se usa para la medir el grado de humedad del aire, o un gas determinado, por medio de sensores que perciben e indican su variación. TERMOMETRÍA La termometría es una rama de la física que se ocupa de los métodos y medios para medir la temperatura. La temperatura no puede medirse directamente. La variación de la temperatura puede ser determinada por la variación de otras propiedades físicas de los cuerpos volumen, presión, resistencia eléctrica, fuerza electromotriz, intensidad de radiación… Tipos de Termómetros (según el margen de temperaturas a estudiar o la precisión exigida) de −39 °C (punto de congelación delTermómetros de líquido: • de mercurio: portátiles y permiten una lecturamercurio) a 357 °C (su punto de ebullición), directa. No son muy precisos para fines científicos. • de alcohol coloreado desde - 112 °C (punto de congelación del etanol, el alcohol empleado en él) hasta 78 °C (su punto de ebullición), cubriendo por lo tanto toda la gama de es también portátil,temperaturas que hallamos normalmente en nuestro entorno. pero todavía menos preciso; sin embargo, presta servicios cuando más que nada importa su cómodo empleo. Termómetros de gas: o desde - 27 °C hasta 1477 °C o muy exacto, margen de aplicación extraordinario. Más complicado y se utiliza como un instrumento normativo para la graduación de otros termómetros. Termómetros de resistencia de platino: o es el más preciso en la gama de −259 °C a 631 °C, y se puede emplear para medir temperaturas hasta de 1127 °C o depende de la variación de la resistencia a la temperatura de una espiral de alambre de platino o reacciona despacio a los cambios de temperatura, debido a su gran capacidad térmica y baja conductividad, por lo que se emplea sobre todo para medir temperaturas fijas. Par térmico (o pila termoeléctrica) o consta de dos cables de metales diferentes unidos, que producen un voltaje que varía con la temperatura de la conexión. o Se emplean diferentes pares de metales para las distintas gamas de temperatura, siendo muy amplio el margen de conjunto: desde −248 °C hasta 1477 °C. o es el más preciso en la gama de −631 °C a 1064 °C y, como es muy pequeño, puede responder rápidamente a los cambios de temperatura. Pirómetros o El pirómetro de radiación se emplea para medir temperaturas muy elevadas. o Se basa en el calor o la radiación visible emitida por objetos calientes o Es el único termómetro que puede medir temperaturas superiores a 1477 °C. Escalas de Temperatura • Kelvin • Celsius • Fahrenheit • Rankine • Reaumur Termómetro Propiedad termométrica Columna de mercurio, alcohol, etc., en un capilar de vidrio Longitud Gas a volumen constante Presión Gas a presión constante Volumen Termómetro de resistencia Resistencia eléctrica de un metal Termistor Resistencia eléctrica de un semiconductor Par termoeléctrico F.e.m. termoeléctrica Pirómetro de radiación total Ley de Stefan – Boltzmann Pirómetro de radiación visible Ley de Wien Espectrógrafo térmico Efecto Doppler Termómetro magnético Susceptibilidad magnética Cristal de cuarzo Frecuencia de vibración

  1. Diferentes tipos de termómetros que existen y aplicaciones como instrumentos de medición

TIPOS DE TERMOMETROS

En física se utilizan varios tipos de termómetros, según el margen de temperaturas a estudiar o la precisión exigida. Como ya hemos señalado, todos se basan en una propiedad termométrica de alguna sustancia: que cambie continuamente con la temperatura (como la longitud de una columna de líquido o la presión de un volumen constante de gas).

Termómetros de líquido

Los termómetros de líquido encerrado en vidrio son, ciertamente, los más familiares: el de mercurio se emplea mucho para tomar la temperatura de las personas, y, para medir la de interiores, suelen emplearse los de alcohol coloreado en tubo de vidrio.

Los de mercurio pueden funcionar en la gama que va de -39 °C (punto de congelación del mercurio) a 357 °C (su punto de ebullición), con la ventaja de ser portátiles y permitir una lectura directa. No son, desde luego, muy precisos para fines científicos.

Termómetros de gas

El termómetro de gas de volumen constante es muy exacto, y tiene un margen de aplicación extraordinario: desde - 27 °C hasta 1477 °C. Pero es más complicado, por lo que se utiliza más bien como un instrumento normativo para la graduación de otros termómetros.

El termómetro de gas a volumen constante se compone de una ampolla con gas -helio, hidrógeno o nitrógeno, según la gama de temperaturas deseada- y un manómetro medidor de la presión. Se pone la ampolla del gas en el ambiente cuya temperatura hay que medir, y se ajusta entonces la columna de mercurio (manómetro) que está en conexión con la ampolla, para darle un volumen fijo al gas de la ampolla. La altura de la columna de mercurio indica la presión del gas. A partir de ella se puede calcular la temperatura.

En un termómetro de gas de volumen constante el volumen del hidrógeno que hay en una ampolla metálica se mantiene constante levantando o bajando un depósito. La altura del mercurio del barómetro se ajusta entonces hasta que toca justo el indicador superior: la diferencia de los niveles (h) indica entonces la presión del gas y, a su través, su temperatura.

Termómetros de resistencia de platino

El termómetro de resistencia de platino depende de la variación de la resistencia a la temperatura de una espiral de alambre de platino. Es el termómetro más preciso dentro de la gama de -259 °C a 631 °C, y se puede emplear para medir temperaturas hasta de 1127 °C. Pero reacciona despacio a los cambios de temperatura, debido a su gran capacidad térmica y baja conductividad, por lo que se emplea sobre todo para medir temperaturas fijas.

Par térmico

Un par térmico (o pila termoeléctrica) consta de dos cables de metales diferentes unidos, que producen un voltaje que varía con la temperatura de la conexión. Se emplean diferentes pares de metales para las distintas gamas de temperatura, siendo muy amplio el margen de conjunto: desde -248 °C hasta 1477 °C. El par térmico es el termómetro más preciso en la gama de -631 °C a 1064 °C y, como es muy pequeño, puede responder rápidamente a los cambios de temperatura.

Varias sondas termométricas para ser utilizadas con un termómetro digital de termopares de laboratorio

Pirómetros

El pirómetro de radiación se emplea para medir temperaturas muy elevadas. Se basa en el calor o la radiación visible emitida por objetos calientes, y mide el calor de la radiación mediante un par térmico o la luminosidad de la radiación visible, comparada con un filamento de tungsteno incandescente conectado a un circuito eléctrico. El pirómetro es el único termómetro que puede medir temperaturas superiores a 1477 °C.

La temperatura del interior de un horno se mide con un termómetro de radiación o pirómetro

TERMOMETROS DE DILATACIÓN

Termómetros de líquido en vidrio

El vidrio del termómetro debe elegirse por su estabilidad y debe estar bien recocido. El bulbo, a altas temperaturas y presiones, está expuesto a aumento permanente de volumen, ocasionando que la indicación del termómetro sea más baja de lo debido.

Los termómetros de mercurio más exactos están graduados y calibrados para inmersión total; esto es, con todo el mercurio, incluyendo el del tubo, a la temperatura que se está: midiendo. Si parte del mercurio de la columna se extiende fuera de la región en que se ha de medir la temperatura, hay que aplicar una corrección a la lectura, basada en la longitud en grados de la columna emergente, en la diferencia de temperatura entre la columna emergente y el bulbo y en la ditalación relativa del mercurio y del vidrio.

Termómetro de Beckmann

El termómetro diferencial de Beckmann tiene una escala de 30 cm de largo, aproximadamente, con una escala total de 5 6 6 grados C. en divisiones. de 0.01 de grado. Está construido de suerte que una parte del mercurio del bulbo puede ser trasladada a un depósito de manera que lleve el extremo de la columna de mercurio a la sección graduada para las zonas de temperaturas en que se han de medir las diferencias. Se emplea sólo para medir diferencias la temperatura. La exactitud conseguida está entre 0.002 y 0.005 grados en la medida de cualquier intervalo dentro de los límites de la escala.

Termómetro de cinta bimetálica

Este termómetro consiste en una cinta hecha de dos metales de coeficientes de dilatación térmica muy diferente, tales como el Invar y el latón, soldados cara con cara en toda su longitud. La cinta puede ser casi recta o puede formar una espiral para conseguir mayor sensibilidad. Una elevación de temperatura cambia la curvatura de la cinta, puesto que el latón aumenta más rápidamente en longitud que el Invar. Si uno de los extremos es fijo, un indicador unido al extremo libre se mueve sobre una escala graduada en temperaturas o una pluma se mueve sobre una tarjeta movible para registrar la temperatura. Las cintas bimetálicas se emplean para obrar sobre contactos eléctricos que controlan la temperatura de habitaciones, baiíos de aire y hemos. Dentro del intervalo.

La respuesta a los cambios de temperatura es casi lineal. Dentro del intervalo de temperaturas aceptado (no superior a 1500 C. cuando se emplea el latón, considerablemente superior cuando se emplea en lugar del latón una aleación de cromo y níquel), los errores inherentes a la cinta son insignificantes. Pueden ocasionarse errores apreciables en el enlace mecánico. Hay una frna , la cual la cinta bimetálica es una espiral dentro de un tubo delgado de metal, y la aguja indicadora se mueve sobre una escala circular graduada, coaxial con el tubo. Puede reemplazar al termómetro de mercurio para numerosos usos.

Termómetros de sistemas llenos

Termómetros llenos de gas

El termómetro de gas de volumen constante, mencionado al hablar del establecimiento de la escala termodinámica de temperaturas, pertenece a la categoría de termómetros llenos de gas y es el más exacto de este tipo. Sólo se emplea en los laboratorios de patrones a causa de su complejidad y de su tamaño. Para usos industriales, un termómetro por presión de gas consta de un elemento que mide la presión, como el tubo Bourdon conectado por un tubo capilar a una ampolla que se expone a la temperatura que se ha de medir. El sistema se llena, a presión, con un gas inerte, ordinariamente el nitrógeno. Puesto que la presión del gas en un recipiente cerrado es proporcional a su temperatura absoluta, el elemento medidor puede ser calibrado en grados de temperatura con una escala dividida uniformemente. Como el gas del elemento medidor y del tubo de conexión no está a la temperatura del bulbo, el volumen de éste tiene que ser grande para que los errores introducidos por la diferencia de temperatura del elemento medidor de la presión y del tubo capilar resulten insignificantes. El bulbo debe tener por lo menos cuarenta veces el volumen del resto del sistema. Por ello, y a causa del retardo en la transmisión de los cambios de presión por el tubo capilar, la longitud de éste se limita a un máximo de 60 m, y es preferible mucho menos.

La presión inicial en el termómetro de gas es ordinariamente de 10 a 35 Kg/cm². El par de torsión producido es entonces amplio para operar una pluma registradora cuando la dimensión de la escala es 200 grados centesirnales, o más. Las dimensiones de la escala menores de 50 grados no son recomendadas. Con una dimensión de escala de 200 grados, o más, la reproducibilidad de las lecturas es del orden de +- 1/4 % de aquella dimensión. El tiempo de respuesta tiende a ser largo, en parte a causa de la necesidad de transmitir los cambios de presión por medio de un tubo de calibre fino y en parte a causa del gran volumen y escasa conductividad térmica del nitrógeno. Para el volumen suficiente, el bulbo tiene ordinariamente 22 mm de diámetro, lo que da una respuesta lenta. El tiempo de respuesta puede ser disminuido consiguiendo el volumen deseado mediante el empleo de un tubo largo de 6.5 mm, ordinariamente en forma de hélice de 5 cm.

La temperatura es indicada por una aguja que se mueve sobre una escala graduada o se registra en un papel de gráficas sobre un cilindro por una pluma accionada por el elemento que mide la presión. La escala para los registradores rara vez es menor de 100 grados centesimales, pero en los aparatos indicadores el campo puede ser menor.

Las variaciones en la presión barométrica no suelen ser tan grandes que afecten apreciablemente las indicaciones pero los grandes cambios en altitud deben ser corregidos en la graduación.

Los termómetros de gas a presión se emplean en temperaturas entre -450 °F. y + 1000 °F. (-268 °C. y + 538 °C.), lo cual queda parcial o enteramente fuera de los límites de los sistemas de vapor a presión y en aplicaciones en que la menor exactitud y el mayor tamaño del bulbo no exigen la elección de un termómetro de alto costo del tipo de expansión de líquido.

Termómetros de vapor a presión

Los termómetros de vapor a presión utilizan el hecho de que en una vasija cerrada que no contiene más que un líquido y su vapor, llenando el líquido sólo parcialmente, el recinto, la presión es dependiente solamente de la especie del líquido y de su temperatura. Un uso muy extenso se hace de esta relación entre la presión del vapor y la temperatura en la medida y registro de las temperaturas industriales.

El termómetro de presión de vapor (fig. 1) se parece al termómetro de gas a presión en que consta de un bulbo, un tubo de conexión de longitud fija, de 1.5 a 75 m de largo, y un elemento sensible a la presión (fig. 2).

Termómetro de vapor a presión Elemento sensible a la presión

El bulbo está parcialmente ocupado por un líquido con una temperatura de ebullición bastante baja para producir una presión de trabajo de 5 a 35 Kg/cm² en el intervalo de temperaturas a cubrir. El extremo superior de este intervalo debe ser mas bajo que el punto crítico del líquido. Se emplean el cloruro de metilo, el anhídrido sulfuroso, el éter, el alcohol etílico y el tolueno, elegidos para la presión de vapor apropiada según las relaciones de temperatura, la inercia de los metales empleados (-o el sistema y la disponibilidad del líquido en forma pura. Los citados líquidos cubren una gama de -180 hasta 300 °C.

La presión de vapor aumenta con la temperatura más rápidamente a medida que la temperatura se eleva, de suerte que la curva temperatura presión de vapor no es lineal, y las gráficas de temperatura tienen sus marcas de grados mucho más separadas en el extremo superior de la escala que en el inferior. Un aparato registrador de 10 a 100 °C. puede tener divisiones de 2 grados C. entre 10 y 40 °C. y solamente de medio grado desde 40 hasta 100 °C. La exactitud de la lectura es escasa en el extremo inferior de la escala. La reproducibilidad de los termómetros de vapor a presión es del orden de +- 1 %, y en algunos casos considerablemente mejor.

El nivel del bulbo con respecto al aparato de medición de la presión es importante, pues si la temperatura del tubo de conexión es inferior a la temperatura del bulbo, el vapor se condensará en el tubo de conexión. El aparato de medición de la presión está sometido a la presión del vapor en el bulbo más la carga hidrostática de esta columna de líquido si el bulbo está sobre el aparato de medición, o a la presión del vapor en el bulbo menos la carga hidrostática si el bulbo está bajo el aparato de medida. Si la temperatura de operación del bulbo ha de ser más alta que la temperatura del aparato de medida de la presión, el instrumento se gradúa para una diferencia de nivel definida, Deben hacerse correcciones si se cambia la elevación del bulbo.

Un gran defecto en este sistema de medida es el trastorno debido al paso del líquido desde el bulbo al elemento de presión, o inversarnente, cuando la temperatura medida cruza la temperatura del instrumento.

Termómetros de líquido en dilatación

En un termómetro de líquido en dilatación, el sistema se llena completamente con un líquido apropiado y consiste en un bulbo conectado por tubo capilar a un elemento en forma de hélice o espiral de Bourdon situado en la caja del instrumento. A medida que aumenta la temperatura y se dilata el líquido, la hélice tiende a deshacerse para proporcionar el aumento de volumen y es mayor. La presión de llenado elegida debe ser tal, que la temperatura de ebullición del líquido sea apreciablemente más alta que la mayor temperatura que el sistema haya de medir. Pueden medirse temperaturas desde -1 75 °C. hasta + 300 °C. (550 °C. para el mercurio). Aunque los cambios de volumen son relativamente pequeños, las fuerzas ejercidas pueden ser grandes para
accionar el elemento, y por consiguiente, este tipo de medida se considera bueno para aparatos reguladores que requieran alto grado de estabilidad.

El origen mayor de error en este tipo de medida es la dilatación térmica del líquido que no está en el bulbo. Cuando la longitud del tubo es corta, el error está en su mayor parte en el elemento Bourdon, y normalmente se coloca un elemento bimetálico de corrección en la caja para compensar este error.

Cuando el tubo capilar es largo, se usa uno de estos dos métodos para la corrección:

  • 1) Un hilo metálico central se coloca en el tubo capilar en toda su longitud; este hilo tiene un coeficiente de dilatación que corrige el cambio de volumen de] líquido. Normalmente se emplea esto únicamente en los sistemas llenos con mercurio.
  • 2) Un segundo tubo capilar sin bulbo, cerrado en el extremo correspondiente al bulbo, va paralelo al tubo capilar desde el bulbo y acciona un Bourdon helicoidal idéntico en la caja del instrumento, de tal modo enlazado con el elemento original, que cualquier dilatación en este capilar corrector se resta del otro sistema y corrige toda dilatación, excepto la del bulbo medidor.

Cualquier dilatación térmica del bulbo es incluida automáticamente en la graduación del sistema. La dilatación térmica

  1. Mediciones con fonometría e interferómetro principios y aplicaciones

La Fotometríaes la ciencia que se encarga de la medida de la luz como el brillo percibido por el ojo humano. Es decir, estudia la capacidad que tiene la radiación electromagnética de estimular el sistema visual. No debe confundirse con la Radiometría, que se encarga de la medida de la luz en términos de potencia absoluta.

El ojo humano no tiene la misma sensibilidad para todas las longitudes de onda que forman el espectro visible. La Fotometría introduce este hecho ponderando las diferentes magnitudes radiométricas medidas para cada longitud de onda por un factor que representa la sensibilidad del ojo para esa longitud. La función que introduce estos pesos se denomina función de luminosidad espectral o eficiencia luminosa relativa de un ojo modelo, que se suele denotar como , o (este modelo u observador estándar es muy similar a los de la Colorimetría). Esta función es diferente dependiendo de que el ojo se encuentre adaptado a condiciones de buena iluminación (visión fotópica) o de mala (visión escotópica). Así, en condiciones fotópicas, la curva alcanza su pico para 555 nm, mientras que en condiciones escotópicas lo hace para 507 nm. combinando algunos nm. se froman otros colores como el amarillo combinacion de Rojo y VERDE las cuales son diferentes nm. y si se juntan los forman Pero hay algunos animales que no pueden ver estas tonalidades como las ardillas o los perros que ven blanco y negro para el ojo humano pero tal vez susu ojos vean diferentes tonalidades las cuales no conoce el ojo humano.

Relación con la Radiometría

Considérese, por ejemplo, la magnitud radiométrica de la energía radiante, , que describe la energía total medida por un detector "físico" ante la presencia de radiación eletromagnética. Interesa obtener una medida de la energía que sería percibida por un ojo humano: cantidad de luz, . Para ello, habría que conocer la energía radiante correspondiente a cada longitud de onda, multiplicar por los valores correspodientes de la función de luminosidad e integrar a todas las longitudes de onda:

La energía radiante espectral, , se mide en el SI en unidades de J/m. En cambio, se mide en lm·s. La constante K toma el valor de 683 lm/W en condiciones fotópicas y de 1700 lm/W para condiciones escotópicas.

Eficacia luminosa

La eficacia luminosa de una radiación se define como el cociente entre una magnitud fotométrica de la misma, por ejemplo , y la correspondiente magnitud fotométrica, en este caso . Así:

Por ejemplo, la eficacia luminosa de un láser infrarrojo sería igual a 0 lm /W, mientras que la de luz monocromática a 555 nm sería de 683 lm/W (para este caso, ).

Principales magnitudes fotométricas

La siguiente tabla recoge las principales magnitudes fotométricas, su unidad de medida y la magnitud radiométrica asociada:

  1. Bibliografía

Carlos Gonzales Gonzales, Ramón Zeleny Vázquez, 1998,

Mc Graw Hill Interamericana Editores, Delegación, cuauhtemoc No 06450 Mexico DF

CYBERGRAFIA

WIKIPEDIA




Descargar
Enviado por:Erik
Idioma: castellano
País: México

Te va a interesar