Biología, Botánica, Genética y Zoología


Genética


1. INTRODUCCIÓN  Genética, estudio científico de cómo se transmiten los caracteres físicos, bioquímicos y de comportamiento de padres a hijos. Este término fue acuñado en 1906 por el biólogo británico William Bateson. Los genetistas determinan los mecanismos hereditarios por los que los descendientes de organismos que se reproducen de forma sexual no se asemejan con exactitud a sus padres, y las diferencias y similitudes entre padres e hijos que se reproducen de generación en generación según determinados patrones. La investigación de estos últimos ha dado lugar a algunos de los descubrimientos más importantes de la biología moderna.

  • ORIGEN DE LA GENÉTICA

  • La ciencia de la genética nació en 1900, cuando varios investigadores de la reproducción de las plantas descubrieron el trabajo del monje austriaco Gregor Mendel, que aunque fue publicado en 1866 había sido ignorado en la práctica. Mendel, que trabajó con la planta del guisante (chícharo), describió los patrones de la herencia en función de siete pares de rasgos contrastantes que aparecían en siete variedades diferentes de esta planta. Observó que los caracteres se heredaban como unidades separadas, y cada una de ellas lo hacía de forma independiente con respecto a las otras (véase Leyes de Mendel). Señaló que cada progenitor tiene pares de unidades, pero que sólo aporta una unidad de cada pareja a su descendiente. Más tarde, las unidades descritas por Mendel recibieron el nombre de genes.

    GREGOR MENDEL: Conocido como padre de la genética moderna, Gregor Mendel desarrolló los principios de la herencia estudiando siete pares de caracteres heredados en el guisante (chícharo). Aunque la importancia de su obra no se reconoció en vida del investigador, se ha convertido en fundamento de la genética actual.

    CROMOSOMAS: Los cromosomas contienen la información genética del organismo. Cada tipo de organismo tiene un número de cromosomas determinado; en la especie humana, por ejemplo, hay 23 pares de cromosomas organizados en 8 grupos según el tamaño y la forma. La mitad de los cromosomas proceden del padre y la otra mitad de la madre. Las diferencias entre individuos reflejan la recombinación genética de estos juegos de cromosomas al pasar de una generación a otra.

    Poco después del redescubrimiento de los trabajos de Mendel, los científicos se dieron cuenta de que los patrones hereditarios que él había descrito eran comparables a la acción de los cromosomas en las células en división, y sugirieron que las unidades mendelianas de la herencia, los genes, se localizaban en los cromosomas. Ello condujo a un estudio profundo de la división celular.

    Cada célula procede de la división de otra célula. Todas las células que componen un ser humano derivan de las divisiones sucesivas de una única célula, el cigoto (véase Fecundación), que se forma a partir de la unión de un óvulo y un espermatozoide. La composición del material genético es idéntica en la mayoría de las células y con respecto al propio cigoto (suponiendo que no se ha producido ninguna mutación, véase más adelante). Cada célula de un organismo superior está formada por un material de aspecto gelatinoso, el citoplasma, que contiene numerosas estructuras pequeñas. Este material citoplasmático envuelve un cuerpo prominente denominado núcleo. Cada núcleo contiene cierto número de diminutos cromosomas filamentosos. Ciertos organismos simples, como las algas verde azuladas y las bacterias, carecen de un núcleo delimitado aunque poseen un citoplasma que contiene uno o más cromosomas. Los cromosomas varían en forma y tamaño y, por lo general, se presentan en parejas. Los miembros de cada pareja, llamados cromosomas homólogos, tienen un estrecho parecido entre sí. La mayoría de las células del cuerpo humano contienen 23 pares de cromosomas, en tanto que la mayor parte de las células de la mosca del vinagre o de la fruta, Drosophila, contienen cuatro pares, y la bacteria Escherichia coli tiene un cromosoma único en forma de anillo. En la actualidad, se sabe que cada cromosoma contiene muchos genes, y que cada gen se localiza en una posición específica, o locus, en el cromosoma.

    ADN: Después de que la ciencia de la genética se estableciera y de que se clarificaran los patrones de la herencia a través de los genes, las preguntas más importantes permanecieron sin respuesta durante más de cincuenta años: ¿cómo se copian los cromosomas y sus genes de una célula a otra, y cómo determinan éstos la estructura y conducta de los seres vivos? A principios de la década de 1940, dos genetistas estadounidenses, George Wells Beadle y Edward Lawrie Tatum, proporcionaron las primeras pistas importantes. Trabajaron con los hongos Neurospora y Penicillium, y descubrieron que los genes dirigen la formación de enzimas a través de las unidades que los constituyen. Cada unidad (un polipéptido) está producida por un gen específico. Este trabajo orientó los estudios hacia la naturaleza química de los genes y ayudó a establecer el campo de la genética molecular.

    Desde hace tiempo se sabe que los cromosomas están compuestos casi en su totalidad por dos tipos de sustancias químicas, proteínas y ácidos nucleicos. Debido en parte a la estrecha relación establecida entre los genes y las enzimas, que son proteínas, al principio estas últimas parecían la sustancia fundamental que determinaba la herencia. Sin embargo, en 1944, el bacteriólogo canadiense Oswald Theodore Avery demostró que el ácido desoxirribonucleico (ADN) era el que desempeñaba esta función. Extrajo el ADN de una cepa de bacterias y lo introdujo en otra cepa. La segunda no sólo adquirió las características de la primera, sino que también las transmitió a generaciones posteriores. Por aquel entonces, se sabía que el ADN estaba formado por unas sustancias denominadas nucleótidos. Cada nucleótido estaba compuesto a su vez por un grupo fosfato, un azúcar conocido como desoxirribosa, y una de las cuatro bases que contienen nitrógeno. Las cuatro bases nitrogenadas son adenina (A), timina (T), guanina (G) y citosina (C).

    En 1953, el genetista estadounidense James Dewey Watson y el británico Francis Harry Compton Crick aunaron sus conocimientos químicos y trabajaron juntos en la estructura del ADN. Esta información proporcionó de inmediato los medios necesarios para comprender cómo se copia la información hereditaria. Watson y Crick descubrieron que la molécula de ADN está formada por dos cadenas, o filamentos, alargadas que se enrollan formando una doble hélice, algo parecido a una larga escalera de caracol. Las cadenas, o lados de la escalera, están constituidas por moléculas de fosfato e hidratos de carbono que se alternan. Las bases nitrogenadas, dispuestas en parejas, representan los escalones. Cada base está unida a una molécula de azúcar y ligada por un enlace de hidrógeno a una base complementaria localizada en la cadena opuesta. La adenina siempre se vincula con la timina, y la guanina con la citosina. Para hacer una copia nueva e idéntica de la molécula de ADN, sólo se necesita que las dos cadenas se extiendan y se separen por sus bases (que están unidas de forma débil); gracias a la presencia en la célula de más nucleótidos, se pueden unir a cada cadena separada bases complementarias nuevas, formando dos dobles hélices. Si la secuencia de bases que existía en una cadena era AGATC, la nueva contendría la secuencia complementaria, o “imagen especular”, TCTAG. Ya que la base de cada cromosoma es una molécula larga de ADN formada por dos cadenas, la producción de dos dobles hélices idénticas dará lugar a dos cromosomas idénticos.

    La estructura del ADN es en realidad mucho más larga que la del cromosoma, pero se halla muy condensada. Ahora se sabe que este empaquetamiento se basa en diminutas partículas llamadas nucleosomas, sólo visibles con el microscopio electrónico más potente. El ADN está enrollado secuencialmente alrededor de cada nucleosoma formando una estructura en forma de rosario. Entonces la estructura se repliega aún más, de manera que las cuentas se asocian en espirales regulares. Por esta razón, el ADN tiene una configuración en espiral enrollada, parecida al filamento de una bombilla.

    Tras los descubrimientos de Watson y Crick, quedó el interrogante de saber cómo el ADN dirigía la formación de proteínas, los compuestos principales de todos los procesos vitales. Las proteínas no son sólo los componentes principales de la mayoría de las estructuras celulares, sino que también controlan casi todas las reacciones químicas que se producen en la materia viva. La capacidad de una proteína para formar parte de una estructura, o para ser una enzima que influye sobre la frecuencia de una reacción química particular, depende de su estructura molecular. Esta estructura depende a su vez de su composición. Cada proteína está formada por uno o más componentes denominados polipéptidos, y cada polipéptido está constituido por una cadena de subunidades llamadas aminoácidos. En los polipéptidos hay veinte tipos distintos de aminoácidos. Al final, el número, tipo y orden de los aminoácidos en una cadena determina la estructura y función de la proteína de la que forma parte.

    8.1. El código genético  
    Desde que se demostró que las proteínas eran producto de los genes, y que cada gen estaba formado por fracciones de cadenas de ADN, los científicos llegaron a la conclusión de que debe haber un código genético mediante el cual el orden de las cuatro bases nitrogenadas en el ADN podría determinar la secuencia de aminoácidos en la formación de polipéptidos. En otras palabras, debe haber un proceso mediante el cual las bases nitrogenadas transmitan la información que dicta la síntesis de proteínas. Este proceso podría explicar cómo los genes controlan las formas y funciones de las células, tejidos y organismos. Como en el ADN sólo hay cuatro tipos de nucleótidos, y, sin embargo, las proteínas se constituyen con 20 clases diferentes de aminoácidos, el código genético no podría basarse en que un nucleótido especificara un aminoácido. Las combinaciones de dos nucleótidos sólo podrían especificar 16 aminoácidos (42 = 16), de manera que el código debe estar formado por combinaciones de tres o más nucleótidos sucesivos. El orden de los tripletes, o como se han denominado, codones, podría definir el orden de los aminoácidos en el polipéptido.

    Diez años después de que Watson y Crick determinaran la estructura del ADN, el código genético fue descifrado y verificado. Su solución dependió en gran medida de las investigaciones llevadas a cabo sobre otro grupo de ácidos nucleicos, los ácidos ribonucleicos (ARN). Se observó que la obtención de un polipéptido a partir del ADN se producía de forma indirecta a través de una molécula intermedia conocida como ARN mensajero (ARNm). Parte del ADN se desenrolla de su empaquetamiento cromosómico, y las dos cadenas se separan en una porción de su longitud. Una de ellas actúa como plantilla sobre la que se forma el ARNm (con la ayuda de una enzima denominada ARN polimerasa). El proceso es muy similar a la formación de una cadena complementaria de ADN durante la división de la doble hélice, salvo que el ARN contiene uracilo (U) en lugar de timina como una de sus cuatro bases nucleótidas, y el uracilo (similar a la timina) se une a la adenina en la formación de pares complementarios. Por esta razón, una secuencia de adenina - guanina - adenina - timina - citosina (AGATC) en la cadena codificada de ADN, origina una secuencia de uracilo - citosina - uracilo - adenina - guanina (UAUAG) en el ARNm.




    Descargar
    Enviado por:Yuvixa
    Idioma: castellano
    País: México

    Te va a interesar