Estadística
Fundamentos de la teoría de la probabilidad
TEMA 5
FUNDAMENTOS DE LA TEORÍA DE LA PROBABILIDAD
Experimento aleatorio.- Aquel experimento que cumple las siguientes condiciones:
Todos los posibles resultados se conocen de antemano.
Ante una realización concreta del experimento, es imposible predecir el resultado
El experimento puede repetirse bajo las mismas condiciones indefinidamente.
Ley de estabilidad de las frecuencias.- Cuando se repite muchas veces un mismo experimento, las frecuencias relativas de sus posibles resultados tienden a estabilizarse en torno a unos valores determinados.
Espacio muestral (Ω).- Es el conjunto de posibles resultados de un experimento
Sucesos elementales.- Son los elementos de Ω, los posibles resultados del experimento.
Suceso.- Un suceso ocurre cuando se verifica uno de los sucesos de Ω.
Suceso imposible (∅).- Subconjunto de Ω que no contiene ningún elemento. Es un resultado del experimento que no puede ocurrir nunca.
Un suceso A está contenido en un suceso B cuando todo suceso elemental de A pertenece a B, o lo que es lo mismo, siempre que ocurre A ocurre B. El recíproco no se verifica.
Para algunas de las siguientes definiciones se utilizará el Álgebra de Boole y su notación.
Conjunto unión.- Está constituido por aquellos elementos que pertenecen a A o a B: ()
Unión de sucesos.- A1 + A2 + A3 + ... + Ai. Se verifica cuando ocurre alguno de los Ai.
Conjunto intersección.- Está constituido por aquellos elementos que pertenecen a A y a B al mismo tiempo: ()
Intersección de sucesos.- A1 · A2 · A3 · ... · Ai. Se verifica cuando ocurren todos los Ai.
La unión y la intersección de sucesos cumplen las propiedades conmutativa, asociativa, distributiva, existencia de elemento neutro (∅ para la unión y Ω para la intersección), y también cumplen las Leyes de De Morgan.
Suceso complementario.- ocurre siempre que no ocurre A.
Sucesos incompatibles.- Dos sucesos son incompatibles si siempre que se verifica uno el otro no puede darse. Es imposible que sucedan ambos a la vez:= ∅.
Diferencia de sucesos.- Se verifica cuando ocurre A y no ocurre B. Se denota por A - B y también por .
Probabilidad.- La probabilidad de un suceso es el límite de su frecuencia relativa cuando el experimento se repite muchas veces.
DEFINICIÓN AXIOMÁTICA DE LA PROBABILIDAD (KOLMOGOROV)
Sea Ω el espacio muestral, y sea p(Ω) el conjunto formado por todos los sucesos. Se define la probabilidad como una aplicación P: p(Ω) → [0, 1] que cumple las siguientes condiciones:
P(Ω) = 1;
Si son incompatibles dos a dos (Ai ∩ Aj = 0, para todo i ≠ j), entonces .
Propiedades:
P(∅) = 0.
Si A1, A2, ... ,An son sucesos incompatibles dos a dos, entonces
A ⊂ B ⇒ P(A) ≤ P(B)
P(A ∪ B) = P(A) + P(B) - P(A ∩ B). Para el caso de tres sucesos nos quedaría de la siguiente forma: P(A ∪ B ∪ C)= P(A) + P(B) + P(C) - P(A ∩ B) - P(A ∩ C) - P(B ∩ C) + P(A ∩ B ∩ C)
Nota: El problema de esta definición es que sólo dice cuando es y cuando no es una aplicación de probabilidad, pero no como conseguir esa aplicación.
Regla de Laplace.- Se usa cuando Ω es finito y los sucesos son equiprobables.
PROBABILIDAD CONDICIONADA
La probabilidad del suceso A condicionada al suceso B se define , con P(B) ≠ 0, de donde se deduce que P( A ∩ B ) = P( B )·P( A / B ) = P( A )·P( B / A).
EJEMPLO: (Probabilidad Condicionada - 1)
Antes de lanzar un dado se definen dos sucesos: A ≡ “Salga un 6” y B ≡ “Salga un nº par”. Se pide la probabilidad de que salga un 6 sabiendo que ha salido par.
Primero se obtienen las probabilidades de A y de B. Como la cara que salga en un dado tras ser este lanzado es equiprobable podremos calcular la probabilidad de que salga un nº determinado aplicando la Regla de Laplace:
Entonces P(A ∩ B) = P( A ) = , y se calcularía:
EJEMPLO: (Probabilidad Condicionada - 2)
Se ha realizado una encuesta en A Coruña para determinar el nº de lectores de “La Voz de Galicia” y “El Ideal Gallego”. Se obtiene que el 32 % de los encuestados lee “La Voz”, el 14 % lee
“El Ideal” y tan sólo un 2.3% lee ambos.
a) Si se ha selecciona un lector de “El Ideal” al azar, ¿cuál es la probabilidad de que también sea lector de “La Voz”?
Se tienen las probabilidades de que un lector lea un periódico, el otro, o los dos. Así que con estos datos se aplica la fórmula vista antes:
b) Si se ha elegido un lector de “La Voz”, ¿cuál es la probabilidad de que no lea “El Ideal”?
En el gráfico está coloreada al área de los lectores que leen “La Voz” pero no “El Ideal”. El Área de esta zona es igual al total de los lectores de “La Voz” menos los lectores de “La Voz” que leen también “El Ideal”. Matemáticamente:
Independencia de sucesos.- Dos sucesos A y B son independientes si el conocimiento de la ocurrencia de uno de ellos no modifica la probabilidad de ocurrencia del otro:
P ( A / B ) = P( A )
P ( B / A ) = P( B )
Propiedad.- Si A y B son independientes, P( A ∩ B ) = P( A )·P( B )
Propiedad.- Si A y B son independientes, también lo son las parejas A,; ,B y
Propiedad.- No deben confundirse sucesos independientes con sucesos incompatibles. Los sucesos incompatibles son los más dependientes que pueden existir.
Fiabilidad.- Se define como la probabilidad de que algo (un mecanismo, p.e.) funcione de forma correcta.
Teorema.- Regla del producto.- Si tenemos los sucesos A1 · A2 · A3 · ... · An, y entre ellos no son incompatibles, se cumple:
P(A1 ∩ A2 ∩... ∩ An) = P(A1)·P(A2 /A1)·P(A3 / A1 ∩ A2)·...· P(An / A1 ∩... ∩ An)
-
Problema típico en que se aplica: Se sacan n bolas sin reposición, probabilidad de que sean todas blancas.
EJEMPLO: (Regla del producto)
La primera aplicación de un insecticida mata al 80% de los mosquitos. Los supervivientes desarrollan resistencia al producto, y así en la segunda aplicación muere el 40% de los supervivien-
tes, en la tercera el 20% de los supervivientes a la segunda aplicación, y así sucesivamente. ¿Cuál
es la probabilidad de que un mosquito sobreviva a la tercera aplicación? Sabiendo que el mosquito sobrevive a las dos primeras aplicaciones, ¿cuál es la probabilidad de que sobreviva a una cuarta?
Se definen los sucesos Ai º “Un mosquito sobrevive a la i-ésima aplicación” y º “No sobrevive”. Los datos que tenemos son los siguientes:;; ;
Entonces se aplica la regla del producto y se halla la respuesta a la primera de las preguntas:
P(A1 ∩ A2 ∩ A3) = P(A1)·P(A2 /A1)·P(A3 / A1 ∩ A2) = 0.2 · 0.6 · 0.8 = 0.096
Para responder a la segunda pregunta se utiliza la fórmula de la probabilidad condicionada:
Hay que señalar que la probabilidad de que se verifique A4 es igual a la probabilidad de que se verifiquen también los Ai anteriores.
Sistema completo de sucesos.- Es una partición del espacio muestral Ω que cumple las siguientes condiciones:
Tienen que cubrir todo el espacio muestral: A1 ∪ A2 ∪... ∪ An = Ω
Fig 5.2 Sistema completo de sucesos.
Tienen que ser incompatibles entre ellos. Si se verifica uno de los sucesos, no puede ocurrir otro a la vez.
Teorema.- Probabilidades totales.- Sean A1, A2 , A3 , ... , An un sistema completo de sucesos. Entonces se cumple:
P(B) = P( B / A1 ) ·P( A1 ) + P( B / A2 ) ·P( A2 ) +...+ P( B / An ) ·P( An )
EJEMPLO: (Probabilidades totales)
En una estación de ITV hay dos equipos de inspección. El equipo A rechaza al 30% de los coches revisados, y el equipo B no rechaza a ninguno. Si llegan tres coches y eligen al azar a uno de estos equipos, ¿cuál es la probabilidad de que los tres superen la inspección?
Se define el suceso S º “El vehículo supera la inspección”, el suceso A º “Se elige al equipo A” y el suceso B º “Se elige al equipo B”.
Se toma un vehículo al azar, y se calcula la probabilidad de que supere el examen:
P( S ) = P( S / A ) ·P( A ) + P( S / B ) ·P( B ) = 0.7·0.5 + 1·0.5 = 0.85
Como el que un coche supere el examen es independiente de que lo supere otro, entonces la probabilidad de que los tres coches superen la revisión es igual al producto de sus probabilidades:
Teorema.- Bayes.- Se considera un experimento que se realiza en dos etapas: en la primera tenemos un sistema completo de sucesos, A1, A2 , A3 , ... , An y les asignamos probabilidades P( Ai ) de forma subjetiva ya que no disponemos de experimentación previa. A las P( Ai ) se les llama probabilidades a priori. En una segunda etapa el resultado del suceso B depende de lo ocurrido en la primera etapa y se conocen las probabilidades condicionadas , obtenidas en la segunda etapa por el suceso B cuando en la primera etapa se obtuvo el suceso Ai.
En estas condiciones el Teorema de Bayes permite calcular las , llamadas probabilidades a posteriori porque se determinan una vez obtenida la evidencia experimental. Por lo tanto, las probabilidades a posteriori () reflejan el grado de creencia corregido respecto a las alternativas A1, A2 , A3 , ... , An , después de observar los datos experimentales.
Enunciado del Teorema de Bayes.- Sean A1, A2 , A3 , ... , An un sistema completo de sucesos. Entonces se cumple que:
Problema típico en que se aplica: Probabilidad de que un ratón escape condicionado a que se fue por el camino A.
Si ha salido una bola blanca, ¿cuál es la probabilidad de que haya sido sacada de la urna 1?
EJEMPLO: (Teorema de Bayes)
En la secretaria del Rector no se puede confiar. La probabilidad de que se le olvide llamar a la mujer del Rector para decirle que está en una junta de gobierno, mientras éste se va de jarana con su chófer es 2/3. La mujer del Rector está harta de tantas historias. Son las dos de la mañana y su marido no aparece. Si la secretaria la llama, existe la misma probabilidad de que al día siguiente le ponga las maletas en la calle que de que no lo haga, pero si no la llama, sólo hay un 25% de probabilidad de que olvide el asunto hasta la próxima ocasión. Al llegar a casa el Rector encuentra sus cosas tiradas por las escaleras. ¿Cuál es la probabilidad de que la secretaria no haya llamado a su mujer?
Es el típico problema de aplicar el teorema de Bayes, presentando ya hechos consumados, y con la petición de hallar la probabilidad de que un suceso B haya ocurrido. En este caso se definirán los sucesos L º “La secretaria llama” y O º “La mujer olvida el asunto”. Se sabe que , que , y que . Por tanto:
Estadística 1º E.T.I.S. Facultade de Informática da Coruña Curso 1.997 -1.998
27
Descargar
Enviado por: | Maxim |
Idioma: | castellano |
País: | España |