Tecnología


Energías renovables


Trabajo sobre las energías renovables

MAREMOTRIZ

BIOMASA

EOLICA

ENERGIA SOLAR

ENERGIA HIDRÁULICA

ENERGÍA GEOTERMICA

-Energía Eólica-

Para producir energía eléctrica a partir del viento se requiere un generador eólico. Se fundamenta en el mismo principio que los molinos de viento. Consiste en una turbina eólica cuya energía es proporcional al cubo de la velocidad del viento. Por lo tanto, sólo es de interés cuando el viento es suficientemente fuerte (más de 20 km./hora) y sopla con regularidad. Existen diversos aparatos con diseños y tamaños adecuados para las diferentes necesidades. Algunos son con eje vertical. La mayor parte de los generadores con eje vertical se han empleado para bombera agua y otro tipo de trabajos mecánicos. Los generadores con eje horizontal son los más conocidos.

Las nuevas máquinas eólicas

Los avances en la aerodinámica han incrementado el rendimiento de los aerogeneradores del 10 hasta el 45%. En buenos emplazamientos, con vientos medios anuales superiores a los 5 m/s a 10 metros de altura, se consiguen producciones eléctricas anuales por metro cuadrado de área barrida superiores a los 1.000 kW/h. El tamaño medio de los grandes aerogeneradores es de 600-1.300 kW con rotores de 40 metros de diámetro. Los futuros desarrollos tecnológicos buscan la reducción de costos mediante la elección de conceptos simplificados como, por ejemplo, el uso de trenes de potencia modulares, diseños sin caja de multiplicación, sistemas de comunicación pasivos y con orientación libre. Los desarrollos inciden también en la reducción de cargas y desgastes mecánicos mediante articulaciones y sistemas de velocidad variable, con control de par, reduciendo las fluctuaciones y mejorando la sincronización a la red. Todo esto se traducirá en trenes de potencia más ligeros y baratos. Hace pocos años los prototipos instalados tenían una potencia de 1.500 Kw., en el año 2001 son los mas vendidos, ahora se proyectan máquinas de 2.500 y 3.000 Kw., incluso de 5.000 Kw. Los generadores sincronos parecen haber llegado a su fin, hoy se habla de generadores doblemente inducidos y velocidad variable, también se estudian generadores de imanes permanentes multipolares y con rotores conectados directamente al rotor. Los nuevos diseños buscan, asimismo, la reducción del impacto visual y la disminución del ruido aerodinámico.

Producción

Actualmente la energía eólica se aprovecha de dos formas bien diferenciadas:

Por una parte se utilizan para sacar agua de los pozos un tipo de eólicas llamados aerobombas, actualmente hay un modelo de máquinas muy generalizado, los molinos multipala del tipo americano. Directamente a través de la energía mecánica o por medio de bombas estos molinos extraen el agua de los pozos sin mas ayuda que la del viento.

Por otra, están ese tipo de eólicas que levan unidas un generador eléctrico y producen corriente cuando sopla el viento, reciben entonces el nombre de aerogeneradores. Los aerogeneradores pueden producir energía eléctrica de dos formas:

Las aplicaciones aisladas: por medio de pequeña o mediana potencia se utilizan para usos domésticos o agrícolas (iluminación, pequeños electrodomésticos, bombeo, irrigación, etc.), Incluso en instalaciones Industriales para desalación, repetidores aislados de telefonía, TV, instalaciones turísticas y deportivas, etc. En caso de estar condicionados por un horario o una continuidad se precisa introducir sistemas de baterías de acumulación o combinaciones con otro tipo de generadores eléctricos (grupos diesel, placas solares fotovoltaicas, centrales mini hidráulicas) También se utilizan aerogeneradores de gran potencia en instalaciones aisladas para usos específicos; Desalinización de agua marina, producción de hidrógeno, etc.

La conexión directa a la red: viene representada por la utilización de aerogeneradores de potencias grandes (mas de 10 ó 100 KW). Aunque en determinados casos y gracias al apoyo de los estados a las energías renovables, es factible la conexión de modelos mas pequeños, siempre teniendo en cuenta los costes de enganche a la red (equipos y permisos). La mayor rentabilidad se obtiene a través de agrupaciones de máquinas potencia conectadas entre si y que vierten su energía conjuntamente a la red eléctrica. Dichos sistemas se denominan parques eólicos.

Ventaja de la Energía Eólica

La energía eólica no contamina, es inagotable y frena el agotamiento de combustibles fósiles contribuyendo a evitar el cambio climático. Es una tecnología de aprovechamiento totalmente madura y puesta a punto. Es una de las fuentes más baratas, puede competir e rentabilidad con otras fuentes energéticas tradicionales como las centrales térmicas de carbón (considerado tradicionalmente como el combustible más barato), las centrales de combustible e incluso con la energía nuclear, si se consideran los costes de reparar los daños medioambientales.

El generar energía eléctrica sin que exista un proceso de combustión o una etapa de transformación térmica supone, desde el punto de vista medioambiental, un procedimiento muy favorable por ser limpio, exento de problemas de contaminación, etc. Se suprimen radicalmente los impactos originados por los combustibles durante su extracción, transformación, transporte y combustión, lo que beneficia la atmósfera, el suelo, el agua, la fauna, la vegetación, etc. Evita la contaminación que conlleva el transporte de los combustibles; gas, petróleo, gasoil, carbón. Reduce el intenso tráfico marítimo y terrestre cerca de las centrales. Suprime los riesgos de accidentes durante estos transportes: desastres con petroleros (traslados de residuos nucleares, etc). No hace necesaria la instalación de líneas de abastecimiento: Canalizaciones a las refinerías o las centrales de gas. La utilización de la energía eólica para la generación de electricidad presenta nula incidencia sobre las características fisicoquímicas del suelo o su erosión, ya que no se produce ningún contaminante que incida sobre este medio, ni tampoco vertidos o grandes movimientos de tierras. Al contrario de lo que puede ocurrir con las energías convencionales, la energía eólica no produce ningún tipo de alteración sobre los acuíferos ni por consumo, ni por contaminación por residuos o vertidos. La generación de electricidad a partir del viento no produce gases tóxicos, ni contribuye al efecto invernadero, ni destruye la capa de ozono, tampoco crea lluvia ácida. No origina productos secundarios peligrosos ni residuos contaminantes.

-Energía Maremotriz -

El movimiento de las aguas del mar, producen una energía que se transforma en electricidad en las centrales mareomotrices. Se aprovecha la energía liberada por el agua de mar en sus movimientos de ascenso y descenso de las mareas (flujo y reflujo). El sistema consiste en aprisionar el agua en el momento de la alta marea y liberarla, obligándola a pasar por las turbinas durante la bajamar. Cuando la marea sube, el nivel del mar es superior al del agua del interior de la ría. Abriendo las compuertas, el agua pasa de un lado al otro del dique, y sus movimientos hacen que también se muevan las turbina de unos generadores de corriente situados junto a los conductos por los que circula el agua. Cuando por el contrario, la marea baja, el nivel del agua del mar es inferior al de la ría, porque el movimiento des agua es de sentido contrario al anterior, pero también se aprovecha para producir electricidad. La energía que desarrollan las ondas es enorme y proporcional a las masas de aguas que oscila y a la amplitud de la oscilación. Esta energía se descompone en dos partes, las cuales, prácticamente, son iguales: una energía potencial, la cual provoca la deformación de la superficie del mar, y una energía cinética o de movimiento, debida al desplazamiento de las partículas; en suma, de la masa de agua. Si la profundidad es pequeña, la energía cinética es transportada con una velocidad que depende de determinadas características de la onda. Se ha calculado que una onda de 7,50 metros de altura sobre el nivel de las aguas tranquilas y de 150 metros de longitud de onda, propagándose con una velocidad de 15 metros por segundo, desarrolla una potencia de 700 caballos de vapor por metro lineal de cresta; según esto, una onda de las mismas características que tuviese 1 kilómetro de ancho desarrollaría la considerable potencia de 700.000 caballos de vapor. Esto explica los desastrosos efectos que producen las tempestades marinas.

Ventajas y desventajas:

-Ventajas: Autorenovable. no contaminante, silenciosa, bajo costo de materia prima, no concentra población.

-Desventajas: Localización puntual, dependiente de la amplitud de las mareas, traslado de energía (muy costoso).

-Energía Solar-

Como rasgos generales podemos decir que la energía solar es de elevada calidad energética, de pequeño o nulo impacto ecológico e inagotable a escala humana; sin embargo existen algunos problemas a la hora de su aprovechamiento: la energía llega a la Tierra de manera dispersa y semialeatoria, estando sometida a ciclos día-noche y estacionales invierno-verano. Dicho aprovechamiento puede hacerse de dos maneras: por captación térmica y por captación fotónica. Analizaremos la energía solar pasiva, térmica y fotovoltaica:

Solar pasiva.

Sus principios están basados en las características de los materiales empleados en la construcción y en la utilización de los fenómenos naturales de circulación de aire. Por tanto, se establece una interrelación entre energía solar pasiva y arquitectura, ya que estos sistemas se construyen sobre la estructura del edificio. Una de las grandes ventajas de los sistemas pasivos, frente a los activos, es su gran durabilidad ya que su vida es análoga a la del edificio. Los elementos básicos utilizados en la actualidad por la arquitectura solar pasiva son:

- Acristalamientos: convenientemente orientados captan la energía solar reteniendo el calor por efecto invernadero.

- Masa térmica: tiene como finalidad almacenar la energía captada, y suele estar costituida por elementos estructurales de la edificación.

Como combinación de estos elementos básicos, se obtienen los diversos sistemas de utilización; por ejemplo: sistemas de ganancia directa, sistemas de muros de inercia, invernaderos, cubiertas de almacenamiento térmico. La repercusión en el medio ambiente de este aprovechamiento de energía solar es nulo, ya que no se produce ningún tipo de impacto sobre la atmósfera, el agua o el suelo, ni tampoco otro tipo de efectos como ruido, alteraciones de ecosistemas, efectos paisajísticos particulares, etcétera. Su aplicación resulta favorable por el impacto evitado y desde el punto de vista arquitectónico. La incorporación de elementos de la arquitectura solar pasiva debe conducir a producir dos efectos sobre las edificaciones que permitan el acondicionamiento técnico de las mismas durante todas las épocas del año.

Solar térmica.

Se basa en la captación de la radiación por medio de un elemnto denominado colector. Existen tres técnicas diferentes entre sí en función de la temperatura que puede alcanzar la superficie captora. Así se suelen distinguir: baja temperatura, media temperatura y alta temperatura, según que la captación sea directa. de bajo índice de concentración o de alto índice de concentración, respectivamente

La tecnología de baja temperatura va destinada al calentamiento de agua por debajo de su punto de ebullición. Hay que distinguir los siguientes subsistemas:

- Subsistema colector. Normalmente están integrados por los siguientes elementos: superficie captadora (normalmente de color negro ), circuito por donde circula el fluido, cubierta transparente, aislamiento térmico y caja protectora.

- Subsistema de almacenamiento. Constituido por depósitos de dimensiones adecuadas, siendo su objetivo almacenar el agua caliente que procede de los paneles para su uso posterior.

- Subsistema de distribución. Constituido por redes de tuberías, válvulas, bombas y accesorios, y que tienen por finalidad transportar el agua caliente desde el sistema colector al de acumulación y desde aquí a los puntos de consumo.

- Subsistema de medida y control. a tecnología de media temperatura va destinada a aquellas aplicaciones que requieren temperaturas superiores a los 100º C. Este tipo de sistemas se puede utilizar para la producción de vapor o para el calentamiento de otro tipo de fluido, pudiéndose alcanzar hasta los 300º C.

La tecnología de alta temperatura está dirigida a aquellas aplicaciones que requieren temperaturas superiores a los 300º C, fundamentalmente producción de energía eléctrica. En este caso se pueden emplear dos sistemas de concentración: Paraboloides (que reflejan la radiación en un punto reducido donde se encuentra el absorbedor) y Centrales de torre (formadas por un campo de espejos orientables que reflejan la radiación sobre una caldera independiente y situada en lo alto de una torre ). El calor captado en el absorbedor es cedido a un fluido que suele ser vapor de agua a presión o sodio fundido.

El generar energía térmica sin que exista un proceso de combustión supone, desde el punto de vista medioambiental, un procedimiento muy favorable por ser limpio y exento de cualquier tipo de contaminación. La única repercusiónque se puede considerar para el caso de media y alta temperaturas son los relacionados con los posibles usos del suelo y los efectos paisajísticos que puede implicar su utilización.

Citaremos diversas aplicaciones bien a baja como a alta temperatura. En la agricultura en invernaderos y en secadores de grano; en la industria en el precalentamiento de fluidos, en el acondicionamiento de naves y edificios auxiliares y en la producción de Agua Caliente Sanitaria(ACS); en el sector industrial y terciario en la producción de ACS, en calefación y en climatización de piscinas. Incluso se utiliza para la producción de frío utilizando sistemas de absorción.

Solar fotovoltaica.

Mediante el efecto fotoeléctrico la energía de los corpúsculos constituyentes de la luz (fotones) se puede aprovechar para producir electricidad. Una de las variantes del fenómeno fotoeléctrico es el efecto fotovoltaico. Las expectativas de la energía solar fotovoltaica son muy interesantes. Las nuevas tecnologías y materiales de fabricación de las células ofrecen la posibilidad de conseguir importantes disminuciones en el precio de los paneles, lo cual permitiría que su uso se hiciera más generalizado.

Desde el punto de vista medioambiental, este tipo de energía se comporta de forma similar a la energía solar térmica; es decir, tiene sobre todo efectos positivos. En pequeñas instalaciones, el único problema que puede originar es el efecto visual. En cuanto a las grandes centrales solares el principal problema es la necesidad de espacio, que puede tener como consecuencia conflictos en cuanto a usos del suelo.

Actualmente las aplicaciones más interesantes son la electrificación rural referida al sector doméstico, las aplicaciones agrícolas y ganaderas, como repetidores de radio y televisión, radiografos, balizas, aeropuertos, calculadoras...

-Energía Geotérmica-

Es una importante fuente de nuevas energías. La energía geotérmica, como excepción, no tiene su origen inmediato en la radiación solar, sino en una serie de reacciones químicas naturales que tienen lugar en el interior de la tierra y que producen grandes cantidades de calor. Esta realidad a veces se pone de manifiesto de forma natural y violenta por fenómenos como el vulcanismo o los terremotos. Pero también el hombre puede aprovechar esta fuente de calor extrayéndolo mediante perforaciones y transfiriendo este calor. Podemos encontrar básicamente cuatro tipos de campos geotérmicos dependiendo de la temperatura a la que sale el agua.

-La energía geotérmica de alta temperatura existe en las zonas activas de la corteza terrestre (zonas volcánicas, límites de placas litosféricas, dorsales oceánicas). A partir de acuíferos cuya temperatura está comprendida entre 150 y 400 ºC, se produce vapor en la superficie que enviado a las turbinas, genera electricidad. Se requieren varios parámetros para que exista un campo geotérmico: un techo compuesto de una cobertura de rocas impermeables; un depósito, o acuífero, de permeabilidad elevada, ente 300 y 2000 m de profundidad; rocas fracturadas que permitan una circulación convectiva de fluidos, y por lo tanto la trasferencia de calor de la fuente a la superficie, y una fuente de calor magmático (entre 3 y 10 km de prof. a 500-600ºC). La explotación de un campo de estas características se hace por medio de perforaciones según técnicas casi idénticas a las de la extracción del petróleo.

- La energía geotérmica de temperaturas medias es aquella en que los fluidos de los acuíferos están a temperaturas menos elevadas (70-150 ºC). Por consiguiente, la conversión vapor-electricidad se realiza a un menor rendimiento, y debe utilizarse como intermediario un fluido volátil. Pequeñas centrales eléctricas pueden explotar estos recursos.

- La energía geotérmica de baja temperatura es aprovechable en zonas más amplias que las anteriores; por ejemplo, en todas las cuencas sedimentarias. Es debida al gradiente geotérmico. Los fluidos están a temperaturas de 60 a 80 ºC. Se utiliza para la calefacción de las viviendas, principalmente en Islandia y en Francia.

- La energía geotérmica de muy baja temperatura se considera cuando los fluidos se calientan a temperaturas comprendidas entre 20 y 60 ºC. Esta energía se utiliza para necesidades domésticas, urbanas o agrícolas (calentamiento de invernaderos, como se utiliza en Hungría).

La frontera entre energía geotérmica de alta temperatura y la energía geotérmica de baja temperatura es un poco arbitraria; es la temperatura por debajo de la cual no es posible ya producir electricidad con un rendimiento aceptable (120 a 180 ºC).

-Energía de la Biomasa-

La energía del sol es utilizada por las plantas para sintetizar la materia orgánica mediante el proceso de fotosíntesis. Esta materia orgánica es incorporada y transformada por el reino animal, incluido el hombre. El hombre, además, la transforma por procedimientos artificiales para obtener bienes de consumo. Todo este proceso da lugar a elementos utilizables directamente, pero también a subproductos que tienen la posibilidad de encontrar aplicación en el campo energético. Al contrario de las energías extraídas de la tanatomasa (carbón; petróleo), la energía derivada de la biomasa es renovable indefinidamente. Al contrario de las energías eólica y solar, la de la biomasa es fácil de almacenar. En cambio, opera con enormes volúmenes combustibles que hacen su transporte oneroso y constituyen un argumento en favor de una utilización local y sobre todo rural. Su rendimiento, expresado en relación a la energía solar incidente sobre las mismas superficies, es muy débil (0,5 % a 4 %, contra 10 % a 30 % para las pilas solares fotovoltaicas), pero las superficies terrestres y acuáticas, de que pueden disponer no tienen comparación con las que pueden cubrir, por ejemplo, los captadores solares.

Utilización de la BIOMASA

Bosques:

La única biomasa explotada actualmente para fines energéticos es la de los bosques. No obstante, el recurso sistemático de la biomasa de los bosques para cubrir la demanda energética sólo puede constituir una opción razonable en países donde la densidad territorial de dicha demanda es muy baja, así como también la de la población (Tercer mundo). En España (por lo demás país deficitario de madera) sólo es razonable contemplar el aprovechamiento energético de la corta y saca y de la limpia de las explotaciones forestales (leña, ramaje, follaje, etc.), así como de los residuos de la industria de la madera. En este sentido, la oferta energética subyacente a las leñas ha sido evaluada en 2.500.000 tep, partiendo de la base de que la producción de leña (siempre en España) en t/ha es aproximadamente igual a la cuarta parte de la cifra correspondiente al crecimiento anual de madera, en m3/ha.

Residuos agrícolas y deyecciones y camas de ganado:

Estos constituyen otra fuente importante de bioenergía, aunque no siempre sea razonable darles este tipo de utilidad. En España sólo parece recomendable el uso a tal fin de la paja de los cereales en los casos en que el retirarla del campo no afecte apreciablemente a la fertilidad del suelo, y de las deyecciones y camas del ganado cuando el no utilizarlas sistemáticamente como estiércol no perjudique las productividades agrícolas. Siguiendo este criterio, en España se ha evaluado una hipotética oferta energética de 3.700.000 tep procedentes de paja de cereales.

Cultivos energéticos:

Es muy discutida la conveniencia de los cultivos o plantaciones con fines energéticos, no sólo por su rentabilidad en sí mismos, sino también por la competencia que ejercerían con la producción de alimentos y otros productos necesarios (madera, etc.). Las dudas aumentan en el caso de las regiones templadas, donde la asimilación fotosintética es inferior a la que se produce en zonas tropicales. Así y todo, en España se ha estudiado de modo especial la posibilidad de ciertos cultivos energéticos, especialmente sorgo dulce y caña de azúcar, en ciertas regiones de Andalucía, donde ya hay tradición en el cultivo de estas plantas de elevada asimilación fotosintética. No obstante, el problema de la competencia entre los cultivos clásicos y los cultivos energéticos no se plantearía en el caso de otro tipo de cultivo energético: los cultivos acuáticos. Una planta acuática particularmente interesante desde el punto de vista energético sería el jacinto de agua, que posee una de las productividades de biomasa más elevadas del reino vegetal (un centenar de toneladas de materia seca por hectárea y por año). Podría recurrirse también a ciertas algas microscópicas (microfitos), que tendrían la ventaja de permitir un cultivo continuo. Así, el alga unicelular Botryococcus braunii, en relación a su peso, produce directamente importantes cantidades de hidrocarburos.

MÉTODOS DE CONVERSIÓN DE LA BIOMASA EN ENERGÍA

Aparte del caso excepcional de Brotryococcus braunii, que produciría directamente petróleo, la utilización práctica de las diferentes formas de biomasa requiere unas técnicas de conversión.

Métodos termoquímicos:

Estos métodos se basan en la utilización del calor como fuente de transformación de la biomasa. Están bien adaptados al caso de la biomasa seca, y, en particular, a los de la paja y de la madera.

La combustión: Es la oxidación completa de la biomasa por el oxígeno del aire, libera simplemente agua y gas carbónico, y puede servir para la calefacción doméstica y para la producción de calor industrial.

La pirólisis: Es la combustión incompleta de la biomasa en ausencia de oxígeno, a unos 500 ºC. Se utiliza desde hace mucho tiempo para producir carbón vegetal. Aparte de esto, la pirólisis lleva a la liberación de un gas pobre, mezcla de monóxido y dióxido de carbono, de hidrógeno y de hidrocarburos ligeros. Este gas de débil poder calorífico, puede servir para accionar motores diesel, o para producir electricidad, o para mover vehículos. Una variante de la pirólisis, llamada pirólisis flash, lleva a 1000 ºC en menos de un segundo, tiene la ventaja de asegurar una gasificación casi total de la biomasa. De todas formas, la gasificación total puede obtenerse mediante una oxidación parcial de los productos no gaseosos de la pirólisis. Las instalaciones en las que se realizan la pirólisis y la gasificación de la biomasa reciben el nombre de gasógenos. El gas pobre producido puede utilizarse directamente como se indica antes, o bien servir de base para la síntesis de un alcohol muy importante, el metanol, que podría sustituir las gasolinas para la alimentación de los motores de explosión (carburol).

Métodos biológicos:

La fermentación alcohólica es una técnica empleada desde muy antiguo con los azúcares, que puede utilizarse también con la celulosa y el almidón, a condición de realizar una hidrólisis previa (en medio ácido) de estas dos sustancias. Pero la destilación, que permite obtener alcohol etílico prácticamente anhídrido, es una operación muy costosa en energía. En estas condiciones, la transformación líe la biomasa en etanol y después la utilización de este alcohol en motores de explosión, tienen un balance energético global dudoso. A pesar de esta reserva, ciertos países (Brasil, E.U.A.) tienen importantes proyectos de producción de etanol a partir le biomasa con un objetivo energético (propulsión de vehículos; cuando el alcohol es puro o mezclado con gasolina, el carburante recibe el nombre de gasohol).

La fermentación metánica es la digestión anaerobia de la biomasa por bacterias. Es idónea para la transformación de la biomasa húmeda (más del 75 % de humedad relativa). En los fermentadores, o digestores, la celulosa es esencialmente la sustancia que se degrada en un gas, que contiene alrededor de 60 % de metano y 40 % de gas carbónico. El problema principal consiste en la necesidad de calentar el equipo, para mantenerlo a la temperatura óptima de 30-35 ºC. No obstante, el empleo de digestores es un camino prometedor hacia la autonomía energética de las explotaciones agrícolas, por recuperación de las deyecciones y camas del ganado. Además, es una técnica de gran interés para los países en vías de desarrollo. Así, millones de digestores ya son utilizados por familias campesinas chinas.

Al contrario de las energías extraídas de la tanatomasa (carbón; petróleo), la energía derivada de la biomasa es renovable indefinidamente. Al contrario de las energías eólica y solar, la de la biomasa es fácil de almacenar. En cambio, opera con enormes volúmenes combustibles que hacen su transporte oneroso y constituyen un argumento en favor de una utilización local y sobre todo rural. Su rendimiento, expresado en relación a la energía solar incidente sobre las mismas superficies, es muy débil (0,5 % a 4 %, contra 10 % a 30 % para las pilas solares fotovoltaicas), pero las superficies terrestres y acuáticas, de que pueden disponer no tienen comparación con las que pueden cubrir, por ejemplo, los captadores solares.

-Energía Hidráulica-

La energía hidráulica se basa en aprovechar la caída del agua desde cierta altura. La energía potencial, durante la caída, se convierte en cinética. El agua pasa por las turbinas a gran velocidad, provocando un movimiento de rotación que finalmente, se transforma en energía eléctrica por medio de los generadores. Es un recurso natural disponible en las zonas que presentan suficiente cantidad de agua, y una vez utilizada, es devuelta río abajo. Su desarrollo requiere construir pantanos, presas, canales de derivación, y la instalación de grandes turbinas y equipamiento para generar electricidad. Todo ello implica la inversión de grandes sumas de dinero, por lo que no resulta competitiva en regiones donde el carbón o el petróleo son baratos. Sin embargo, el peso de las consideraciones medioambientales y el bajo mantenimiento que precisan una vez estén en funcionamiento centran la atención en esta fuente de energía. La fuerza del agua ha sido utilizada durante mucho tiempo para moler trigo, pero fue con la Revolución Industrial, y especialmente a partir del siglo XIX, cuando comenzó a tener gran importancia con la aparición de las ruedas hidráulicas para la producción de energía eléctrica. Poco a poco la demanda de electricidad fue en aumento. El bajo caudal del verano y otoño, unido a los hielos del invierno hacían necesaria la construcción de grandes presas de contención, por lo que las ruedas hidráulicas fueron sustituidas por máquinas de vapor con en cuanto se pudo disponer de carbón. La primera central hidroeléctrica moderna se construyó en 1880 en Northumberland, Gran Bretaña. El renacimiento de la energía hidráulica se produjo por el desarrollo del generador eléctrico, seguido del perfeccionamiento de la turbina hidráulica y debido al aumento de la demanda de electricidad a principios del siglo XX. En 1920 las centrales hidroeléctricas generaban ya una parte importante de la producción total de electricidad. A principios de la década de los noventa, las primeras potencias productoras de energía hidroeléctrica eran Canadá y Estados Unidos. Canadá obtiene un 60% de su electricidad de centrales hidráulicas. En todo el mundo, este tipo de energía representa aproximadamente la cuarta parte de la producción total de electricidad, y su importancia sigue en aumento. Los países en los que constituye fuente de electricidad más importante son Noruega (99%), Zaire (97%) y Brasil (96%). La central de Itaipú, en el río Paraná, está situada entre Brasil y Paraguay; se inauguró en 1982 y tiene la mayor capacidad generadora del mundo. Como referencia, la presa Grand Coulee, en Estados Unidos, genera unos 6500 Mw y es una de las más grandes. En algunos países se han instalado centrales pequeñas, con capacidad para generar entre un kilovatio y un megavatio. En muchas regiones de China, por ejemplo, estas pequeñas presas son la principal fuente de electricidad. Otras naciones en vías de desarrollo están utilizando este sistema con buenos resultados. En Euskadi, debido a que los ríos son de curso corto y no conducen caudales importantes, existen bastantes minicentrales hidráulicas. En el resto de España hay problemas de escasez de agua y se han construido presas para riego. Posteriormente han sido aprovechadas para generar energía, y actualmente tenemos una fracción importante de energía hidroeléctrica instalada.

Historia

Los antiguos romanos y griegos aprovechaban ya la energía del agua; utilizaban ruedas hidráulicas para moler trigo. Sin embargo, la posibilidad de emplear esclavos y animales de carga retrasó su aplicación generalizada hasta el siglo XII. Durante la edad media, las grandes ruedas hidráulicas de madera desarrollaban una potencia máxima de cincuenta caballos. La energía hidroeléctrica debe su mayor desarrollo al ingeniero civil británico John Smeaton, que construyó por vez primera grandes ruedas hidráulicas de hierro colado. La hidroelectricidad tuvo mucha importancia durante la Revolución Industrial. Impulsó las industrias textil y del cuero y los talleres de construcción de máquinas a principios del siglo XIX. Aunque las máquinas de vapor ya estaban perfeccionadas, el carbón era escaso y la madera poco satisfactoria como combustible. La energía hidráulica ayudó al crecimiento de las nuevas ciudades industriales que se crearon en Europa y América hasta la construcción de canales a mediados del siglo XIX, que proporcionaron carbón a bajo precio. Las presas y los canales eran necesarios para la instalación de ruedas hidráulicas sucesivas cuando el desnivel era mayor de cinco metros. La construcción de grandes presas de contención todavía no era posible; el bajo caudal de agua durante el verano y el otoño, unido a las heladas en invierno, obligaron a sustituir las ruedas hidráulicas por máquinas de vapor en cuanto se pudo disponer de carbón. La primera central hidroeléctrica se construyó en 1880 en Northumberland, Gran Bretaña. El renacimiento de la energía hidráulica se produjo por el desarrollo del generador eléctrico, seguido del perfeccionamiento de la turbina hidráulica y debido al aumento de la demanda de electricidad a principios del siglo XX. En 1920 las centrales hidroeléctricas generaban ya una parte importante de la producción total de electricidad. La tecnología de las principales instalaciones se ha mantenido igual durante el siglo XX.

Desarrollo de la energía hidroeléctrica

La primera central hidroeléctrica se construyó en 1880 en Northumberland, Gran Bretaña. El renacimiento de la energía hidráulica se produjo por el desarrollo del generador eléctrico, seguido del perfeccionamiento de la turbina hidráulica y debido al aumento de la demanda de electricidad a principios del siglo XX. En 1920 las centrales hidroeléctricas generaban ya una parte importante de la producción total de electricidad. La tecnología de las principales instalaciones se ha mantenido igual durante el siglo XX. Las centrales dependen de un gran embalse de agua contenido por una presa. El caudal de agua se controla y se puede mantener casi constante. El agua se transporta por unos conductos o tuberías forzadas, controlados con válvulas y turbinas para adecuar el flujo de agua con respecto a la demanda de electricidad. El agua que entra en la turbina sale por los canales de descarga. Los generadores están situados justo encima de las turbinas y conectados con árboles verticales. El diseño de las turbinas depende del caudal de agua; las turbinas Francis se utilizan para caudales grandes y saltos medios y bajos, y las turninas Pelton para grandes saltos y pequeños caudales. Además de las centrales situadas en presas de contención, que dependen del embalse de grandes cantidades de agua, existen algunas centrales que se basan en la caída natural del agua, cuando el caudal es uniforme. Estas instalaciones se llaman de agua fluente. Una de ellas es la de las Cataratas del Niágara, situada en la frontera entre Estados Unidos y Canadá.

13




Descargar
Enviado por:Miguelito
Idioma: castellano
País: España

Te va a interesar