Ecología y Medio Ambiente


Energía nuclear: generalidades y usos


ENERGÍA NUCLEAR

Colegio Bilingüe Vista Hermosa

Energía Nuclear

Guatemala de la Asunción, 2001

Índice

  • Energía

  • Fuentes y Transformaciones de Energía.......................6

  • El Átomo

  • Historia........................................................................15

  • Constitución del átomo...............................................16

  • Modelos Atómicos.......................................................18

  • Energía Atómica

  • Fisión..........................................................................22

  • Fusión.........................................................................23

  • Radiación y radioactividad

  • Radioactividad............................................................26

  • Radiación....................................................................28

  • Interacción de la Energía ionizante con la materia......29

  • Riesgos radiológicos...................................................33

  • Reactores Nucleares

  • Historia........................................................................35

  • Elementos de un reactor nuclear.................................38

  • Tipos de Reactores

  • Reactor de agua en ebullición (BWR)..........................43

  • Reactor de Agua a Presión (PWR)...............................45

  • Reactores de Propulsión.............................................47

  • Reactores de investigación.........................................47

  • Reactores auto-regenerativos.....................................48

  • Combustible nuclear.........................................................50

  • Seguridad Nuclear

  • Sistemas de Control....................................................58

  • Sistemas de Contención..............................................58

  • Concepto de Seguridad a Ultranza..............................60

  • Accidentes y usos Bélicos de la energía Nuclear

  • Accidentes Nucleares.................................................63

  • Usos Bélicos................................................................65

  • Usos pacíficos de la energía Nuclear

  • Agricultura y Alimentación.........................................70

  • Hidrología...................................................................72

  • Medicina.....................................................................72

  • Medio Ambiente.........................................................74

  • Industria e Investigación.............................................74

  • Glosario..............................................................................77

  • Conclusiones......................................................................81

  • Bibliografía........................................................................82

  • Objetivos

    A través de este estudio pretendo profundizar el conocimiento del átomo, tanto su potencia como su uso en nuestro planeta.

    Daré a conocer su origen y concepción en el pasado. También enseñaré acerca de su uso para generar energía a través de su fusión, o sea la liberación de energía cuando dos núcleos atómicos muy livianos se unen, formando un núcleo atómico más pesado y con mayor estabilidad; y la fisión, o sea cuando se separa un núcleo en varios mas livianos generando igualmente gran cantidad de energía. También enseñare la forma de generar estos procesos de fusión y fisión a través de los reactores nucleares.

    Además pretendo dar a conocer los efectos y usos de su combustible-Uranio 235- el cual se usa en los reactores; también su nivel consumo y todo su ciclo de almacenamiento y reciclaje. Además pretendo enseñar los daños y beneficios que a dado la energía nuclear a nuestro planeta como el uso de los rayos láser como para las operaciones relacionadas con la óptica y los accidentes y muertes que esta ha provocado como las bombas nucleares y la explosión del reactor de Chernobyl.

    Finalmente deseo mostrar las partes de los reactores nucleares y sus sistemas de seguridad en caso de un `accidente nuclear.

    Capítulo I

    Energía

    Energía

    La Energía es un concepto esencial de las ciencias. Desde un punto de vista material complejo de definir. La más básica de sus definiciones indica que se trata de la capacidad que poseen los cuerpos para producir Trabajo, es decir la cantidad de energía que contienen los cuerpos se mide por el trabajo que son capaces de realizar.

    La realidad del mundo físico demuestra que la energía, siendo única, puede presentarse bajo diversas Formas capaces de Transformarse unas a otras.

    Formas de Energía

    Algunas formas básicas de energía son:

  • Energía Mecánica.

  • Por ejemplo, aquella que poseen los cuerpos en movimiento, o bien la interacción gravitatoria entre la Tierra y la Luna.

  • Energía Electromagnética.

  • Generada por Campos Electrostáticos, Campos Magnéticos o bien por Corrientes Eléctricas.

  • Energía Térmica.

  • Energía interna de los cuerpos que se manifiesta externamente en forma de Calor.

  • Energía Química.

  • Energía que poseen los compuestos. Se pone de manifiesto por el proceso de conversión generado en una reacción química.

  • Energía Metabólica.

  • Es la generada por los organismos vivos gracias a procesos químicos de oxidación como producto de los alimentos que ingieren.

    Fuentes y Transformaciones de Energía

    Las fuentes de energía se pueden clasificar en:

    1.- Renovables.
    2.- No Renovables.

    Fuentes de Energía Renovables

    Las energías renovables son aquellas que llegan en forma continua a la Tierra y que a escalas de tiempo real parecen ser inagotables.

    Son fuentes de energía renovable:

    Energía Hidráulica

    Es aquella energía obtenida principalmente de las corrientes de agua de los ríos.
    El agua de un río se almacena en grandes embalses artificiales que se ubican a gran altura respecto de un nivel de referencia. El agua adquiere una importante cantidad de energía potencial (aquella que poseen los cuerpos que se encuentran a cierta altura). Posteriormente, el agua se deja caer por medio de ductos, por lo tanto toda su energía potencial se forma en energía cinética (aquella que posee un cuerpo gracias a su estado de movimiento). La energía cinética de las caídas de agua se aprovecha, por ejemplo, para mover turbinas generadoras de electricidad, tal es el principio de las Centrales Hidroeléctricas.

    Energía Solar

    Es la energía que llega a la Tierra proveniente de la estrella más cercana a nuestro planeta: El Sol. Esta energía abarca un amplio espectro de Radiación Electromagnética, donde la luz solar es la parte visible de tal espectro.

    La energía solar es generada por la llamada Fusión Nuclear que es la fuente de vida de todas las estrellas del Universo.

    El hombre puede transformar la energía solar en energía térmica o eléctrica. En el primer caso la energía solar es aprovechada para elevar la temperatura de un fluido, como por ejemplo el agua, y en el segundo caso la energía luminosa del sol transportada por sus fotones de luz, incide sobre la superficie de un material semiconductor (ej: el silicio), produciendo el movimiento de ciertos electrones que componen la estructura atómica del material. Un movimiento de electrones produce una corriente eléctrica que se puede utilizar como fuente de energía de componentes eléctricos o bien electrónicos. Es el caso del principio de funcionamiento de las calculadoras solares.

    Energía nuclear

    Energía Eólica

    Esta energía es producida por los vientos generados en la atmósfera terrestre. Se puede transformar en energía eléctrica mediante el uso de turbinas eólicas que basan su funcionamiento en el giro de aspas movidas por los vientos. Bajo el mismo principio se puede utilizar como mecanismo de extracción de aguas subterráneas o de ciertos tipos de molinos para la agricultura.

    Al igual que la energía solar se trata de un tipo de energía limpia, la cual sin embargo presenta dificultades, pues no existen en la naturaleza flujos de aire constantes en el tiempo, más bien son dispersos e intermitentes.

    Este tipo de energía puede ser de gran utilidad en regiones aisladas, de difícil acceso, con necesidades de energía eléctrica, y cuyos vientos son apreciables en el transcurso del año. Esta descripción se ajusta bien a ciertas zonas del sur de Chile.

    Energía nuclear

    Biomasa

    Esta energía se obtiene de ciertos compuestos orgánicos que se han producido en el tiempo por procesos naturales, es decir, producto de transformaciones químicas y biológicas sobre algunas especies vegetales o bien sobre ciertos materiales. Un ejemplo de tal proceso lo constituyen los residuos forestales, los residuos de la agricultura y los residuos domésticos. Estos residuos se transforman con posterioridad en combustibles. En el caso de los residuos domésticos es necesario como paso previo a la obtención de energía, un plan amplio para la adecuada clasificación de las basuras y su posterior reciclaje.

    Energía Mareomotriz

    Es la energía obtenida del movimiento de las mareas y las olas del mar. El Movimiento de mareas es generado por la interacción gravitatoria entre la Tierra y la Luna. Tal movimiento se utiliza para traspasar energía cinética a generadores de electricidad.

    La gran dificultad para la obtención de este tipo de energía es su alto costo y el establecimiento de un lugar apto geográficamente para confinar grandes masas de agua en recintos naturales.


    Fuentes de Energía No Renovables

    Son fuentes de energía no renovables aquellas que se encuentran en forma limitada en nuestro planeta y se agotan a medida que se les consume.

    Son fuentes de energía no renovables :

    El Carbón

    Es un combustible fósil, formado por la acumulación de vegetales durante el Periodo Carbonífero de la era Primaria de nuestro planeta. Estos vegetales a lo largo del tiempo han sufrido el encierro en el subsuelo terrestre, experimentando cambios de presión y temperatura lo que ha posibilitado la acción de reacciones químicas que los han transformado en variados tipos de carbón mineral.

    El Petróleo

    Es un aceite natural de origen mineral constituido por una mezcla de hidrocarburos. Estos hidrocarburos se producen por antiguos restos de organismos vegetales, organismos acuáticos y organismos vivos depositados en las profundidades de la corteza terrestre en forma de sedimentos.

    El Gas Natural

    Es una mezcla de gases combustibles depositados en forma natural en el subsuelo de la Tierra y que poseen un gran poder calorífico. En ocasiones los yacimientos de gas natural se encuentran acompañados por yacimientos de petróleo.

    El principal componente del gas natural es el metano y en menor proporción los gases de etano, propano y butano.

    Energía Geotérmica

    Energía contenida también en el interior de la Tierra en forma de gases. Al ser extraída se presenta en forma de gases de alta temperatura (fumarolas), en forma de vapor y agua hirviendo (geyser) y en forma de agua caliente (fuentes termales).

    Capítulo II

    El Átomo

    El Átomo

    Historia

    Cinco siglos antes de Cristo, los filósofos griegos se preguntaban si la materia podía ser dividida indefinidamente o si llegaría a un punto que tales partículas fueran indivisibles. Es así, como Demócrito formula la teoría de que la materia se compone de partículas indivisibles, a las que llamó átomos (del griego átomos, indivisible).

    En 1803 el químico inglés John Dalton propone una nueva teoría sobre la constitución de la materia. Según Dalton toda la materia se podía dividir en dos grandes grupos: los elementos y los compuestos. Los elementos estarían constituidos por unidades fundamentales, que en honor a Demócrito, Dalton denominó átomos. Los compuestos se constituirían de moléculas, cuya estructura viene dada por la unión de átomos en proporciones definidas y constantes. La teoría de Dalton seguía considerando el hecho de que los átomos eran partículas indivisibles.

    Hacia finales del siglo XIX, se descubrió que los átomos no son indivisibles, pues se componen de varios tipos de partículas elementales. La primera en ser descubierta fue el electrón en el año 1897 por el investigador Sir Joseph Thomson, quién recibió el Premio Nobel de Física en 1906. Posteriormente, Hantaro Nagaoka (1865-1950) durante sus trabajos realizados en Tokio, propone su teoría según la cual los electrones girarían en órbitas alrededor de un cuerpo central cargado positivamente, al igual que los planetas alrededor del Sol. Hoy día sabemos que la carga positiva del átomo se concentra en un denso núcleo muy pequeño, en cuyo alrededor giran los electrones.

    El núcleo del átomo se descubre gracias a los trabajos realizados en la Universidad de Manchester, bajo la dirección de Ernest Rutherford entre los años 1909 a 1911. El experimento utilizado consistía en dirigir un haz de partículas de cierta energía contra una plancha metálica delgada, de las probabilidades que tal barrera desviara la trayectoria de las partículas , se dedujo la distribución de la carga eléctrica al interior de los átomos.

    Energía nuclear

    Constitución del Átomo

    El átomo está formado por un pequeño núcleo, cargado positivamente, rodeado de electrones con carga eléctrica negativa los cuales giran en diversas órbitas (niveles de energía). El núcleo, que contiene la mayor parte de la masa del átomo, está compuesto a su vez de neutrones y protones, unidos por fuerzas nucleares muy intensas, mucho mayores que las fuerzas eléctricas que ligan los electrones al núcleo. El tamaño de los núcleos atómicos para los diversos elementos están comprendidos entre una cienmilésima y una diezmilésima del tamaño del átomo. El número másico A de un núcleo expresa el número de nucleones (neutrones y protones) que contiene; el número atómico Z es el número de protones, partículas con carga positiva. Los núcleos se designan como ð X; por ejemplo, la expresión ðU representa el uranio 235.

    La energía de enlace de un núcleo mide la intensidad con que las fuerzas nucleares mantienen ligados a los protones y neutrones. La energía de enlace por nucleón, es decir, la energía necesaria para separar del núcleo un neutrón o un protón, depende del número másico. La curva de las energías de enlace implica que si dos núcleos ligeros, que ocupan posiciones muy bajas en la tabla, se fusionan para formar un núcleo de mayor peso (o si un núcleo pesado, que ocupa posiciones muy altas en la tabla, se divide en dos de menor peso), los núcleos resultantes están ligados con más fuerza, por lo que se libera energía.

    La fusión de dos núcleos ligeros libera millones de electrovoltios (MeV), como ocurre cuando dos núcleos de hidrógeno pesado o deuterones (ðH) se combinan según la reacción

    Energía nuclear

    para producir un núcleo de helio 3, un neutrón libre (ðn) y 3,2 MeV, o 5,1 × 10-13 julios (J). También se libera energía nuclear cuando se induce la fisión de un núcleo pesado como el ðU mediante la absorción de un neutrón, como en la reacción

    Energía nuclear

    que produce cesio 140, rubidio 93, tres neutrones y 200 MeV, o 3,2 × 10-11 J. Una reacción de fisión nuclear libera una energía 10 millones de veces mayor que una reacción química típica.

    Modelos Atómicos

    A través de la historia han surgido diversos modelos que han intentado dar respuesta sobre la estructura del átomo. Algunos de tales modelos son los siguientes:

    a) El Modelo de Thomson.
    Thomson sugiere un modelo atómico que tomaba en cuenta la existencia del electrón, descubierto por él en 1897. Su modelo era estático, pues suponía que los electrones estaban en reposo dentro del átomo y que el conjunto era eléctricamente neutro. Con este modelo se podían explicar una gran cantidad de fenómenos atómicos conocidos hasta la fecha. Posteriormente, el descubrimiento de nuevas partículas y los experimentos llevado a cabo por Rutherford demostraron la inexactitud de tales ideas.

    b) El Modelo de Rutherford.
    Basado en los resultados de su trabajo que demostró la existencia del núcleo atómico, Rutherford sostiene que casi la totalidad de la masa del átomo se concentra en un núcleo central muy diminuto de carga eléctrica positiva. Los electrones giran alrededor del núcleo describiendo órbitas circulares. Estos poseen una masa muy ínfima y tienen carga eléctrica negativa. La carga eléctrica del núcleo y de los electrones se neutralizan entre sí, provocando que el átomo sea eléctricamente neutro.
    El modelo de Rutherford tuvo que ser abandonado, pues el movimiento de los electrones suponía una pérdida continua de energía, por lo tanto, el electrón terminaría describiendo órbitas en espiral, precipitándose finalmente hacia el núcleo. Sin embargo, este modelo sirvió de base para el modelo propuesto por su discípulo Neils Bohr, marcando el inicio del estudio del núcleo atómico, por lo que a Rutherford se le conoce como el padre de la era nuclear.

    c) El Modelo de Bohr.
    El físico danés Niels Bohr ( Premio Nobel de Física 1922), postula que los electrones giran a grandes velocidades alrededor del núcleo atómico. Los electrones se disponen en diversas órbitas circulares, las cuales determinan diferentes niveles de energía. El electrón puede acceder a un nivel de energía superior, para lo cual necesita "absorber" energía. Para volver a su nivel de energía original es necesario que el electrón emita la energía absorbida (por ejemplo en forma de radiación0. Este modelo, si bien se ha perfeccionado con el tiempo, ha servido de base a la moderna física nuclear.

    d) Modelo Mecano - Cuántico.
    Se inicia con los estudios del físico francés Luis De Broglie, quién recibió el Premio Nobel de Física en 1929. Según De Broglie, una partícula con cierta cantidad de movimiento se comporta como una onda. En tal sentido, el electrón tiene un comportamiento dual de onda y corpúsculo, pues tiene masa y se mueve a velocidades elevadas. Al comportarse el electrón como una onda, es imposible conocer en forma simultánea su posición exacta y su velocidad, por lo tanto, sólo existe la probabilidad de encontrar un electrón en cierto momento y en una región dada en el átomo, denominando a tales regiones como niveles de energía. La idea principal del postulado se conoce con el nombre de Principio de Incertidumbre de Heisenberg. En estricto rigor el principio de Incertidumbre indica que  "variables canónicamente conjugadas no pueden determinarse simultáneamente con una precisión mejor que  ".

    Capítulo III

    Energía Atómica

    Energía Atómica

    Energía liberada durante la Fisión Nuclear (división de núcleos atómicos pesados) o Fusión Nuclear (unión de núcleos atómicos muy livianos) de núcleos atómicos. Las cantidades de energía que pueden obtenerse mediante procesos nucleares superan con mucho a las que pueden lograrse mediante procesos químicos, que sólo implican las regiones externas del átomo.

    La energía de cualquier sistema, ya sea físico, químico o nuclear, se manifiesta por su capacidad de realizar trabajo o liberar calor o radiación. La energía total de un sistema siempre se conserva, pero puede transferirse a otro sistema o convertirse de una forma a otra.

    Hasta el siglo XIX, el principal combustible era la leña, cuya energía procede de la energía solar acumulada por las plantas. Desde la Revolución Industrial, los seres humanos dependen de los combustibles fósiles —carbón o petróleo—, que también constituyen energía solar almacenada. Cuando se quema un combustible fósil como el carbón, los átomos de hidrógeno y carbono que lo constituyen se combinan con los átomos de oxígeno del aire; se produce agua y dióxido de carbono y se libera calor, unos 1,6 kilovatios hora por kilogramo de carbón, o unos 10 electrovoltios (eV) por átomo de carbono. Esta cantidad de energía es típica de las reacciones químicas que corresponden a cambios en la estructura electrónica de los átomos. Parte de la energía liberada como calor mantiene el combustible adyacente a una temperatura suficientemente alta para que la reacción continúe.

    Fisión Nuclear

    Las dos características fundamentales de la fisión nuclear en cuanto a la producción práctica de energía nuclear. En primer lugar, la energía liberada por la fisión es muy grande. La fisión de 1 Kg de uranio 235 libera 18,7 millones de kilovatios hora en forma de calor. En segundo lugar, el proceso de fisión iniciado por la absorción de un neutrón en el uranio 235 libera un promedio de 2,5 neutrones en los núcleos fisionados. Estos neutrones provocan rápidamente la fisión de varios núcleos más, con lo que liberan otros cuatro o más neutrones adicionales e inician una serie de fisiones nucleares auto mantenidas, una reacción en cadena que lleva a la liberación continuada de energía nuclear.

    El uranio presente en la naturaleza sólo contiene un 0,71% de uranio 235; el resto corresponde al isótopo no fisionable uranio 238. Una masa de uranio natural, por muy grande que sea, no puede mantener una reacción en cadena, porque sólo el uranio 235 es fácil de fisionar. Es muy improbable que un neutrón producido por fisión, con una energía inicial elevada de aproximadamente 1 MeV, inicie otra fisión, pero esta probabilidad puede aumentarse cientos de veces si se frena el neutrón a través de una serie de colisiones elásticas con núcleos ligeros como hidrógeno, deuterio o carbono. Los neutrones que escapan de la fisión, al bajar su energía cinética, se encuentran en condiciones de fisionar otros núcleos pesados, produciendo una Reacción Nuclear en Cadena. En ello se basa el diseño de los reactores de fisión empleados para producir energía.

    En diciembre de 1942, en la Universidad de Chicago (EEUU), el físico italiano Enrico Fermi logró producir la primera reacción nuclear en cadena. Para ello empleó un conjunto de bloques de uranio natural distribuidos dentro de una gran masa de grafito puro (una forma de carbono). En la `pila' o reactor nuclear de Fermi, el `moderador' de grafito frenaba los neutrones y hacía posible la reacción en cadena.

    Energía nuclear

    Fusión Nuclear

    La fusión nuclear ocurre cuando dos núcleos atómicos muy livianos se unen, formando un núcleo atómico más pesado con mayor estabilidad. Estas reacciones liberan energías tan elevadas que en la actualidad se estudian formas adecuadas para mantener la estabilidad y confinamiento de las reacciones.

    La energía necesaria para lograr la unión de los núcleos se puede obtener utilizando energía térmica o bien utilizando aceleradores de partículas. Ambos métodos buscan que la velocidad de las partículas aumente para así vencer las fuerzas de repulsión electrostáticas generadas al momento de la colisión necesaria para la fusión.

    Para obtener núcleos de átomos aislados, es decir, separados de su envoltura de electrones, se utilizan gases sobrecalentados que constituyen el denominado Plasma Físico. Este proceso es propio del Sol y las estrellas, pues se tratan de gigantescas estructuras de mezclas de gases calientes atrapadas por las fuerzas de gravedad estelar.

    El confinamiento de las partículas se logra utilizando un "Confinamiento Magnético", o bien un "Confinamiento Inercial". El Confinamiento Magnético aprovecha el hecho que el plasma está compuesto por partículas (núcleos) con carga eléctrica. Se sabe que si una de estas partículas interactúa con un Campo Magnético su trayectoria y velocidad cambian, quedando atrapadas por dicho Campo. El Confinamiento Inercial permite comprimir el plasma hasta obtener densidades de 200 a 1000 veces mayor que la de sólidos y líquidos. Cuando se logra la compresión deseada se eleva la temperatura del elemento, lo que facilita aún más el proceso de la fusión.

    La fusión nuclear se puede representar por el siguiente esquema y relación de equilibrio:

    2H + 2H 3He + 1n+ 3,2 MeV

    Energía nuclear

    Capítulo IV

    Radiación y Radioactividad

    Radiación y Radioactividad

    Radiactividad

    a) Radiactividad Natural.
    En Febrero de 1896, el físico francés Henri Becquerel investigando con cuerpos fluorescentes (entre ellos el Sulfato de Uranio y el Potasio), halló una nueva propiedad de la materia a la que posteriormente Marie Curie llamó "Radiactividad". Se descubre que ciertos elementos tenían la propiedad de emitir radiaciones semejantes a los rayos X en forma espontánea. Tal radiación era penetrante y provenía del cristal de Uranio sobre el cual se investigaba.

    Marie y Pierre Curie al proseguir los estudios encontraron fuentes de radiación natural bastante más poderosas que el Uranio original, entre estos el Polonio y el Radio. La radiactividad del elemento no dependía de la naturaleza física o química de los átomos que lo componen, sino que era una propiedad radicada en el interior mismo del átomo.

    Hoy en día se conocen más de 40 elementos radiactivos naturales, que corresponden a los elementos más pesados. Por arriba del número atómico 83, todos los núcleos naturales son radiactivos.

    b) Desintegraciones Alfa, Beta, Gamma.

    La radiactividad es un fenómeno que se origina exclusivamente en el núcleo de los átomos radiactivos. La causa que los origina probablemente se debe a la variación en la cantidad de partículas que se encuentran en el núcleo.

    Cuando el núcleo atómico es inestable a causa del gran número de protones que posee (ocurre en los elementos más pesados, es decir con Z = 83 o superior), la estabilidad es alcanzada, con frecuencia, emitiendo una partícula alfa, es decir, un núcleo de Helio (2He4 ) formado por dos protones y dos neutrones.

    Cuando la relación de neutrones/protones en un núcleo atómico es elevada, el núcleo se estabiliza emitiendo un neutrón, o bien como ocurre con frecuencia, emitiendo una partícula beta, es decir, un electrón.

    Cuando la relación de neutrones/protones es muy pequeña, debe ocurrir una disminución en el número de protones o aumentar el número de neutrones para lograr la estabilidad del núcleo. Esto ocurre con la emisión de un electrón positivo o positrón, o bien absorbiendo el núcleo un electrón orbital.

    Los rayos gamma son ondas electromagnéticas de gran energía, muy parecidos a los rayos X, y en ciertas ocasiones se presentan cuando ocurre una desintegración de partículas beta, o bien una emisión de positrones. Por lo tanto, la radiación gamma no posee carga eléctrica y su naturaleza ondulatoria permite describir su energía con relación a su frecuencia de emisión.

    c) Radiactividad Artificial.

    Al bombardear diversos núcleos atómicos con partículas alfa de gran energía, se pueden transformar en un núcleo diferente, por lo tanto, se transforma en un elemento que no existe en la naturaleza. Los esposos Irene Curie y Frédéric Joliot, experimentando con tales procesos descubren la radiactividad artificial, pues se percatan que al bombardear ciertos núcleos con partículas procedentes de fuentes radiactivas estos se vuelven radiactivos. Si la energía de las partículas es adecuada, entonces puede penetrar en el núcleo generando su inestabilidad y por ende, induciendo su desintegración radiactiva.

    Desde el descubrimiento de los primeros elementos radiactivos artificiales, el hombre ha logrado en el tiempo obtener una gran cantidad de ellos. Es clave en este proceso la aparición de los llamados aceleradores de partículas y de los reactores nucleares. Estos últimos son fuente importante de neutrones que son utilizados para producir gran variedad de radioisótopos.

    Radiación

    a) Radiaciones Ionizantes.
    Son radiaciones con energía necesaria para arrancar electrones de los átomos. Cuando un átomo queda con un exceso de carga eléctrica, ya sea positiva o negativa, se dice que se ha convertido en un ión (positivo o negativo.)

    Son radiaciones ionizantes los rayos X, las radiaciones alfa, beta, gamma y la emisión de neutrones.
    La radiación cósmica ( proveniente del Sol y del espacio interestelar ) también es un tipo de radiación ionizante, pues está compuesta por radiaciones electromagnéticas y por partículas con gran cantidad de energía. Es así como, los llamados rayos cósmicos blandos, se componen principalmente de rayos gamma, electrones o positrones, y la radiación cósmica primaria ( que llega a las capas más altas de la atmósfera ) se compone fundamentalmente de protones. Cuando la radiación cósmica interactúa con la atmósfera de la Tierra, se forman en ella átomos radiactivos (como el Tritio y el Carbono-14) y se producen partículas alfa, neutrones o protones.

    Las radiaciones ionizantes pueden provocar reacciones y cambios químicos con el material con el cual interaccionan. Por ejemplo, son capaces de romper los enlaces químicos de las moléculas o generar cambios genéticos en células reproductoras.

    b) Radiaciones No Ionizantes.
    Son aquellas que no son capaces de producir iones al interactuar con los átomos de un material.

    Las radiaciones no ionizantes se pueden clasificar en dos grandes grupos: los campos electromagnéticos y las radiaciones ópticas.

    Dentro de los campos electromagnéticos se pueden distinguir aquellos generados por las líneas de corriente eléctrica o por campos eléctricos estáticos. Otros ejemplos son las ondas de radiofrecuencia, utilizadas por las emisoras de radio en sus transmisiones, y las microondas utilizadas en electrodomésticos y en el área de las telecomunicaciones.

    Entre las radiaciones ópticas se pueden mencionar los rayos láser, los rayos infrarrojos, la luz visible y la radiación ultravioleta. Estas radiaciones pueden provocar calor y ciertos efectos fotoquímicos al actuar sobre el cuerpo humano.

    Interacción de la Radiación Ionizante con la Materia

    El efecto inmediato de las radiaciones ionizantes al interactuar con la materia es la ionización, es decir la creación de iones positivos o negativos.

    Otro efecto que genera la radiación ionizante es conocido con el nombre de "excitación del átomo". La excitación ocurre cuando un electrón salta a una órbita o nivel de energía superior, para después volver a su órbita original, emitiendo energía en el transcurso del proceso.

    a) Interacción de las Radiaciones Alfa con la Materia.
    La partícula alfa se compone de 2 protones y 2 neutrones. Su poder de penetración en la materia es muy bajo y sólo es capaz de recorrer algunos centímetros en el aire. Su corto recorrido describe una trayectoria prácticamente en línea recta. Cuando penetra la materia presenta un alto poder de ionización, formando verdaderas columnas de iones ( cuando penetra en un centímetro de aire puede producir hasta 30.000 pares de iones).

    Energía nuclear

    b) Interacción de la Radiaciones Beta con la Materia.
    La masa de las partículas beta (electrones negativos) es muy pequeña, por lo tanto, su movilidad es mayor respecto de las partículas alfa. Durante su recorrido cambia fácilmente de trayectoria y su alcance y poder de penetración es mayor. Además, su poder de ionización es inferior, respecto de la partícula alfa.

    Si una partícula beta se acerca a un núcleo atómico, desvía su trayectoria y pierde parte de su energía ( se "frena" ). La energía que ha perdido se transforma en rayos X. Este proceso recibe el nombre de "Radiación de Frenado".

    Otra interesante reacción ocurre cuando una partícula beta colisiona con un positrón (electrón positivo). En este proceso, ambas partículas se aniquilan y desaparecen, liberando energía en forma de rayos gamma.

    Energía nuclear

    c) Interacción de las Radiaciones Gamma con la Materia.
    Las radiaciones gamma carecen de carga eléctrica, por lo tanto, no sufren desviaciones en su trayectoria como producto de la acción de campos eléctricos de núcleos atómicos o electrones. Tales características permiten que la radiación gamma sea capaz de traspasar grandes espesores de material y de ionizar indirectamente las sustancias que encuentra en su recorrido.

    Un rayo gamma es capaz de sacar un electrón de su órbita atómica. El electrón arrancado producirá ionización en nuevos átomos circundantes, lo que volverá a suceder hasta que se agote toda la energía de la radiación gamma incidente.

    Energía nuclear

    d) Interacción de los Neutrones con la Materia.

    Los neutrones también carecen de carga eléctrica y no sufren la acción de campos eléctricos ni magnéticos. Al igual que la radiación gamma son capaces de atravesar grandes espesores de material.

    Cuando un neutrón choca con un átomo le cede parte de su energía mediante la acción de choques elásticos ( la energía total del sistema se mantiene constante ) e inelásticos ( la energía total del sistema no se conserva ). Como producto de los sucesivos choques el neutrón pierde velocidad en forma gradual, hasta alcanzar una magnitud de 2.200 metros/segundo. A estos neutrones se les denomina "Neutrones Térmicos".

    Si un neutrón colisiona con un núcleo atómico y sus masas son muy parecidas, entonces el neutrón pierde una gran cantidad de energía. Mayor será la pérdida de energía mientras más se asemejen sus masas. Por lo tanto, los choques que aseguran gran pérdida de energía ocurren con los núcleos de los átomos de Hidrógreno. El proceso por el cual los neutrones reducen su velocidad en forma gradual recibe el nombre de "Termalización" o "Moderación de Neutrones".

    Los neutrones térmicos se pueden desintegrar, formando un protón y un electrón, o bien pueden ser absorbidos por los núcleos de los átomos circundantes, dando lugar a reacciones nucleares, como por ejemplo la fisión nuclear.

    Energía nuclear

    Riesgos Radiológicos

    Los materiales radiactivos emiten radiación ionizante penetrante que puede dañar los tejidos vivos. La unidad que suele emplearse para medir la dosis de radiación equivalente en los seres humanos es el milisievert. La dosis de radiación equivalente mide la cantidad de radiación absorbida por el organismo, corregida según la naturaleza de la radiación puesto que los diferentes tipos de radiación son más o menos nocivos. En el caso del Reino Unido, por ejemplo, cada individuo está expuesto a unos 2,5 milisieverts anuales por la radiación de fondo procedente de fuentes naturales. Los trabajadores de la industria nuclear están expuestos a unos 4,5 milisieverts (aproximadamente igual que las tripulaciones aéreas, sometidas a una exposición adicional a los rayos cósmicos).

    La exposición de un individuo a 5 sieverts suele causar la muerte. Una gran población expuesta a bajos niveles de radiación experimenta aproximadamente un caso de cáncer adicional por cada 10 sieverts de dosis equivalente total. Por ejemplo, si una población de 10.000 personas está expuesta a una dosis de 10 milisieverts por individuo, la dosis total será de 100 sieverts, por lo que habrá 10 casos de cáncer debidos a la radiación (además de los cánceres producidos por otras causas).

    En la mayoría de las fases del ciclo de combustible nuclear pueden existir riesgos radiológicos. El gas radón, radiactivo, es un contaminante frecuente en las minas subterráneas de uranio. Las operaciones de extracción y trituración del mineral producen grandes cantidades de material que contiene bajas concentraciones de uranio. Estos residuos tienen que ser conservados en fosas impermeables y cubiertos por una capa de tierra de gran espesor para evitar su liberación indiscriminada en la biosfera.

    Capítulo V

    Reactores Nucleares

    REACTORES NUCLEARES

    Es una instalación física donde se produce, mantiene y controla una reacción nuclear en cadena. Por lo tanto, en un reactor nuclear se utiliza un combustible adecuado que permita asegurar la normal producción de energía generada por las sucesivas fisiones. Algunos reactores pueden disipar el calor obtenido de las fisiones, otros sin embargo utilizan el calor para producir energía eléctrica.

    Historia

    El primer reactor construido en el mundo fue operado en 1942, en dependencias de la Universidad de Chicago (USA), bajo la atenta dirección del famoso investigador Enrico Fermi. De ahí el nombre de "Pila de Fermi", como posteriormente se denominó a este reactor. Su estructura y composición eran básicas si se le compara con los reactores actuales existentes en el mundo, basando su confinamiento y seguridad en sólidas paredes de ladrillos de grafito.

    Energía nuclear

    Los primeros reactores nucleares a gran escala se construyeron en 1944 en Hanford, en el estado de Washington (EEUU), para la producción de material para armas nucleares. El combustible era uranio natural; el moderador, grafito. Estas plantas producían plutonio mediante la absorción de neutrones por parte del uranio 238; el calor generado no se aprovechaba.

    Aunque al principio de la década de 1980 había 100 centrales nucleares en funcionamiento o en construcción en Estados Unidos, tras el accidente de Three Mile Island (ver más adelante) la preocupación por la seguridad y los factores económicos se combinaron para bloquear el crecimiento de la energía nuclear. Desde 1979, no se han encargado nuevas centrales nucleares en Estados Unidos y no se ha permitido el funcionamiento de algunas centrales ya terminadas. En 1990, alrededor del 20% de la energía eléctrica generada en Estados Unidos procedía de centrales nucleares, mientras que este porcentaje es casi del 75% en Francia.

    En el periodo inicial del desarrollo de la energía nuclear, en los primeros años de la década de 1950, sólo disponían de uranio enriquecido Estados Unidos y la Unión de Repúblicas Socialistas Soviéticas (URSS). Por ello, los programas de energía nuclear de Canadá, Francia y Gran Bretaña se centraron en reactores de uranio natural, donde no puede emplearse como moderador agua normal porque absorbe demasiados neutrones. Esta limitación llevó a los ingenieros canadienses a desarrollar un reactor enfriado y moderado por óxido de deuterio (D2O), también llamado agua pesada. El sistema de reactores canadienses de deuterio-uranio (CANDU), empleado en 20 reactores, ha funcionado satisfactoriamente, y se han construido centrales similares en la India, Argentina y otros países.

    En Gran Bretaña y Francia, los primeros reactores de generación de energía a gran escala utilizaban como combustible barras de metal de uranio natural, moderadas por grafito y refrigeradas por dióxido de carbono (CO2) gaseoso a presión. En Gran Bretaña, este diseño inicial fue sustituido por un sistema que emplea como combustible uranio enriquecido. Más tarde se introdujo un diseño mejorado de reactor, el llamado reactor avanzado refrigerado por gas (RAG). En la actualidad, la energía nuclear representa casi una cuarta parte de la generación de electricidad en el Reino Unido. En Francia, el tipo inicial de reactor se reemplazó por el RAP de diseño estadounidense cuando las plantas francesas de enriquecimiento isotópico empezaron a proporcionar uranio enriquecido. Rusia y los otros Estados de la antigua URSS tienen un amplio programa nuclear, con sistemas moderados por grafito y RAP. A principios de la década de 1990, estaban en construcción en todo el mundo más de 120 nuevas centrales nucleares.

    En España, la tecnología adoptada en los reactores de las centrales nucleares es del tipo de agua ligera; sólo la central de Vandellós tiene reactor de grafito refrigerado con CO2.

    Elementos de un Reactor Nuclear

    Energía nuclear

    1.Núcleo 6. Turbina

    2.Barras de control 7. Alternador

    3.Generador de vapor 8. Bomba

    4.Presionador 9. Condensador

    5.Vasija 10. Agua de refrigeración

    11. Contención de hormigón

    El Combustible:

    Material fisionable utilizado en cantidades específicas y dispuesto en forma tal, que permite extraer con rapidez y facilidad la energía generada. El combustible en un reactor se encuentra en forma sólida, siendo el más utilizado el Uranio bajo su forma isotópica de U-235. Sin embargo, hay elementos igualmente fisionables, como por ejemplo el Plutonio que es un subproducto de la fisión del Uranio.

    En la naturaleza existe poca cantidad de Uranio fisionable, es alrededor del 0,7%, por lo que en la mayoría de los reactores se emplea combustible "enriquecido", es decir, combustible donde se aumenta la cantidad de Uranio 235.

    Barras de Combustible:


    Son el lugar físico donde se confina el Combustible Nuclear. Algunas Barras de Combustible contienen el Uranio mezclado en Aluminio bajo la forma de láminas planas separadas por una cierta distancia que permite la circulación de fluido para disipar el calor generado. Las láminas se ubican en una especie de caja que les sirve de soporte.

    Núcleo del Reactor:

    Está constituido por las Barras de Combustible. El núcleo posee una forma geométrica que le es característica, refrigerado por un fluido, generalmente agua. En algunos reactores el núcleo se ubica en el interior de una piscina con agua, a unos 10 a 12 metros de profundidad, o bien al interior de una vasija de presión construida en acero.

    Barras de Control:

    Todo reactor posee un sistema que permite iniciar o detener las fisiones nucleares en cadena. Este sistema lo constituyen las Barras de Control, capaces de capturar los neutrones que se encuentran en el medio circundante. La captura neutrónica evita que se produzcan nuevas fisiones de núcleos atómicos del Uranio. Generalmente, las Barras de Control se fabrican de Cadmio o Boro.

    Moderador:

    Los neutrones obtenidos de la fisión nuclear emergen con velocidades muy altas (neutrones rápidos). Para asegurar continuidad de la reacción en cadena, es decir, procurar que los "nuevos neutrones" sigan colisionando con los núcleos atómicos del combustible, es necesario disminuir la velocidad de estas partículas (neutrones lentos). Se disminuye la energía cinética de los neutrones rápidos mediante choques con átomos de otro material adecuado, llamado Moderador.

    Se utiliza como Moderador el agua natural (agua ligera), el agua pesada (deuterada), el Carbono (grafito), etc..

    Refrigerante:

    El calor generado por las fisiones se debe extraer del núcleo del reactor. Para lograr este proceso se utilizan fluidos en los cuales se sumerge el núcleo. El fluido no debe ser corrosivo, debe poseer gran poder de absorción calorífico y tener pocas impurezas. Se puede utilizar de refrigerante el agua ligera, el agua pesada, el anhídrido carbónico, etc..

    Blindaje:

    En un reactor se produce gran cantidad de todo tipo de Radiaciones, las cuales se distribuyen en todas direcciones. Para evitar que los operarios del reactor y el medio externo sean sometidos indebidamente a tales radiaciones, se utiliza un adecuado "Blindaje Biológico" que rodea al reactor. Los materiales más usados en la construcción de blindajes para un reactor son el agua, el plomo y el hormigón de alta densidad, con a los menos 1,5 metros de espesor.

    Capítulo VI

    Tipos de Reactores

    Tipos de Reactores

    En todo el mundo se han construido diferentes tipos de reactores (caracterizados por el combustible, moderador y refrigerante empleados) para la producción de energía eléctrica.

    Tipos de Reactores Nucleares

    Existen dos tipos de reactores:

    • Los Reactores de Investigación.
      Utilizan los neutrones generados en la fisión para producir radioisótopos o bien para realizar diversos estudios en materiales.

    • Los Reactores de Potencia.
      Estos reactores utilizan el calor generado en la fisión para producir energía eléctrica, desalinización de agua de mar, calefacción, o bien para sistemas de propulsión.

    Existen otros criterios para clasificar diversos tipos de reactores:

    • Según la velocidad de los neutrones que emergen de las reacciones de fisión. Se habla de reactores rápidos o bien reactores térmicos.

    • Según el combustible utilizado. Hay reactores de Uranio natural ( la proporción de Uranio utilizado en el combustible es muy cercana a la que posee en la naturaleza), de Uranio enriquecido (se aumenta la proporción de Uranio en el combustible).

    • Según el moderador utilizado. Se puede utilizar como moderador el agua ligera, el agua pesada o el grafito.

    • Según el refrigerante utilizado.

    Hay dos tipos de reactores de potencia de mayor uso en el mundo: el Reactor de Agua en Ebullición y el Reactor de Agua a Presión:

    Reactor de Agua en Ebullición (BWR)

    Ha sido desarrollado principalmente en Estados Unidos, Suecia y Alemania.

    En el reactor de agua en ebullición, el agua de refrigeración se mantiene a una presión algo menor, por lo que hierve dentro del núcleo. El vapor producido en la vasija presurizada del reactor se dirige directamente al generador de turbinas, se condensa y se bombea de vuelta al reactor. Aunque el vapor es radiactivo, no existe un intercambiador de calor entre el reactor y la turbina, con el fin de aumentar la eficiencia. El vapor que sale de la turbina pasa por un condensador, donde es transformado nuevamente en agua líquida. Posteriormente vuelve al reactor al ser impulsada por un bomba adecuada. Igual que en el reactor de agua a presión, el agua de refrigeración del condensador procede de una fuente independiente, como un lago o un río.

    El nivel de potencia de un reactor en funcionamiento se mide constantemente con una serie de instrumentos térmicos, nucleares y de flujo. La producción de energía se controla insertando o retirando del núcleo un grupo de barras de control que absorben neutrones. La posición de estas barras determina el nivel de potencia en el que la reacción en cadena se limita a auto mantenerse.

    Durante el funcionamiento, e incluso después de su desconexión, un reactor grande de 1.000 megavatios (MW) contiene una radiactividad de miles de millones de curios. La radiación emitida por el reactor durante su funcionamiento y por los productos de la fisión después de la desconexión se absorbe mediante blindajes de hormigón de gran espesor situados alrededor del reactor y del sistema primario de refrigeración. Otros sistemas de seguridad son los sistemas de emergencia para refrigeración de este último, que impiden el sobrecalentamiento del núcleo en caso de que no funcionen los sistemas de refrigeración principales. En la mayoría de los países también existe un gran edificio de contención de acero y hormigón para impedir la salida al exterior de elementos radiactivos que pudieran escapar en caso de una fuga.

    Energía nuclear

    1. Núcleo del reactor. 5. Vasija 10. Agua de Refrigeración

    2. Barras de control. 6. Turbina 11. Transformador.

    3. Cambiador de calor 7. Alternador 12. Recinto de contención

    4. Presionador 8. Bomba de hormigón armado.

    9. Condensador 13. Contención primaria

    de acero.

    Reactor de Agua a Presión (PWR)

    Es ampliamente utilizado en Estados Unidos, Alemania, Francia y Japón.

    El refrigerante es agua a gran presión. El moderador puede ser agua o bien grafito. Su combustible también es Uranio-238 enriquecido con Uranio-235. El reactor se basa en el principio de que el agua sometida a grandes presiones puede evaporarse sin llegar al punto de ebullición, es decir, a temperaturas mayores de 100 °C. El vapor se produce a unos 600 °C, el cual pasa a un intercambiador de calor donde es enfriado y condensado para volver en forma líquida al reactor. En el intercambio hay traspaso de calor a un circuito secundario de agua. El agua del circuito secundario, producto del calor, produce vapor, que se introduce en una turbina que acciona un generador eléctrico.

    Energía nuclear

    1. Núcleo del reactor 5. Vasija. 9. Condensador

    2. Barras de control. 6. Turbina 10. Agua de

    3. Cambiador de calor 7. Alternador. Refrigeración

    (generador de vapor) 8. Bomba. 11. Transformador.

    4. Presionador. 12. Recinto de contención

    de Hormigón armado

    Cuando el refrigerante es agua, esta se somete a una presión de unas 150 atmósferas. El agua se bombea a través del núcleo del reactor, donde se calienta hasta unos 325 °C. El agua sobrecalentada se bombea a su vez hasta un generador de vapor, donde a través de intercambiadores de calor calienta un circuito secundario de agua, que se convierte en vapor. Este vapor propulsa uno o más generadores de turbinas que producen energía eléctrica, se condensa, y es bombeado de nuevo al generador de vapor. El circuito secundario está aislado del agua del núcleo del reactor, por lo que no es radiactivo. Para condensar el vapor se emplea un tercer circuito de agua, procedente de un lago, un río o una torre de refrigeración. La vasija presurizada de un reactor típico tiene unos 15 m de altura y 5 m de diámetro, con paredes de 25 cm de espesor. El núcleo alberga unas 80 toneladas de óxido de uranio, contenidas en tubos delgados resistentes a la corrosión y agrupados en un haz de combustible.

    Reactores de Propulsión  

    Para la propulsión de grandes buques de superficie, como el portaaviones estadounidense Nimitz, se emplean reactores nucleares similares al RAP. La tecnología básica del sistema RAP fue desarrollada por primera vez en el programa estadounidense de reactores navales dirigido por el almirante Hyman George Rickover. Los reactores para propulsión de submarinos suelen ser más pequeños y emplean uranio muy enriquecido para que el núcleo pueda ser más compacto. Estados Unidos, Gran Bretaña, Rusia y Francia disponen de submarinos nucleares equipados con este tipo de reactores.

    Estados Unidos, Alemania y Japón utilizaron durante periodos limitados tres cargueros oceánicos experimentales con propulsión nuclear. Aunque tuvieron éxito desde el punto de vista técnico, las condiciones económicas y las estrictas normas portuarias obligaron a suspender dichos proyectos. Los soviéticos construyeron el primer rompehielos nuclear, el Lenin, para emplearlo en la limpieza de los pasos navegables del Ártico.

    Reactores de Investigación

     En muchos países se han construido diversos reactores nucleares de pequeño tamaño para su empleo en formación, investigación o producción de isótopos radiactivos. Estos reactores suelen funcionar con niveles de potencia del orden de 1 MW, y es más fácil conectarlos y desconectarlos que los reactores más grandes utilizados para la producción de energía.

    Una variedad muy empleada es el llamado reactor de piscina. El núcleo está formado por material parcial o totalmente enriquecido en uranio 235, contenido en placas de aleación de aluminio y sumergido en una gran piscina de agua que sirve al mismo tiempo de refrigerante y de moderador. Pueden colocarse sustancias directamente en el núcleo del reactor o cerca de éste para ser irradiadas con neutrones. Con este reactor pueden producirse diversos isótopos radiactivos para su empleo en medicina, investigación e industria (véase Isótopo trazador). También pueden extraerse neutrones del núcleo del reactor mediante tubos de haces, para utilizarlos en experimentos.

    Reactores Auto-regenerativos

     Existen yacimientos de uranio, la materia prima en la que se basa la energía nuclear, en diversas regiones del mundo. No se conoce con exactitud sus reservas totales, pero podrían ser limitadas a no ser que se empleen fuentes de muy baja concentración, como granitos y esquistos. Un sistema ordinario de energía nuclear tiene un periodo de vida relativamente breve debido a su muy baja eficiencia en el uso del uranio: sólo aprovecha aproximadamente el 1% del contenido energético del uranio.

    La característica fundamental de un `reactor auto regenerativo' es que produce más combustible del que consume. Lo consigue fomentando la absorción de los neutrones sobrantes por un llamado material fértil. Existen varios sistemas de reactor auto regenerativo técnicamente factibles. El que más interés ha suscitado en todo el mundo emplea uranio 238 como material fértil. Cuando el uranio 238 absorbe neutrones en el reactor, se convierte en un nuevo material fisionable, el plutonio, a través de un proceso nuclear conocido como desintegración â (beta). La secuencia de las reacciones nucleares es la siguiente:

    Energía nuclear

    En la desintegración beta, un neutrón del núcleo se desintegra para dar lugar a un protón y una partícula beta.

    Cuando el plutonio 239 absorbe un neutrón, puede producirse su fisión, y se libera un promedio de unos 2,8 neutrones. En un reactor en funcionamiento, uno de esos neutrones se necesita para producir la siguiente fisión y mantener en marcha la reacción en cadena. Una media o promedio de 0,5 neutrones se pierden por absorción en la estructura del reactor o el refrigerante. Los restantes 1,3 neutrones pueden ser absorbidos por el uranio 238 para producir más plutonio a través de las reacciones indicadas en la ecuación (3).

    El sistema auto regenerativo a cuyo desarrollo se ha dedicado más esfuerzo es el llamado reactor auto regenerativo rápido de metal líquido (RARML). Para maximizar la producción de plutonio 239, la velocidad de los neutrones que causan la fisión debe mantenerse alta, con una energía igual o muy poco menor que la que tenían al ser liberados. El reactor no puede contener ningún material moderador, como el agua, que pueda frenar los neutrones. El líquido refrigerante preferido es un metal fundido como el sodio líquido. El sodio tiene muy buenas propiedades de transferencia de calor, funde a unos 100 °C y no hierve hasta unos 900 °C. Sus principales desventajas son su reactividad química con el aire y el agua y el elevado nivel de radiactividad que se induce en el sodio dentro del reactor.

    En Estados Unidos, el desarrollo del sistema RARML comenzó antes de 1950, con la construcción del primer reactor auto regenerativo experimental, el llamado EBR-1. Un programa estadounidense más amplio en el río Clinch fue cancelado en 1983, y sólo se ha continuado el trabajo experimental. En Gran Bretaña, Francia, Rusia y otros Estados de la antigua URSS funcionan reactores auto regenerativos, y en Alemania y Japón prosiguen los trabajos experimentales.

    En uno de los diseños para una central RARML de gran tamaño, el núcleo del reactor está formado por miles de tubos delgados de acero inoxidable que contienen un combustible compuesto por una mezcla de óxido de plutonio y uranio: un 15 o un 20% de plutonio 239 y el resto uranio. El núcleo está rodeado por una zona llamada capa fértil, que contiene barras similares llenas exclusivamente de óxido de uranio. Todo el conjunto de núcleo y capa fértil mide unos 3 m de alto por unos 5 m de diámetro, y está montado en una gran vasija que contiene sodio líquido que sale del reactor a unos 500 °C. Esta vasija también contiene las bombas y los intercambiadores de calor que ayudan a eliminar calor del núcleo. El vapor se genera en un circuito secundario de sodio, separado del circuito de refrigeración del reactor (radiactivo) por los intercambiadores de calor intermedios de la vasija del reactor. Todo el sistema del reactor nuclear está situado dentro de un gran edificio de contención de acero y hormigón.

    La primera central a gran escala de este tipo empleada para la generación de electricidad, la llamada Super-Phénix, comenzó a funcionar en Francia en 1984. En las costas del mar Caspio se ha construido una central de escala media, la BN-600, para producción de energía y desalinización de agua. En Escocia existe un prototipo de gran tamaño con 250 megavatios.

    El RARML produce aproximadamente un 20% más de combustible del que consume. En un reactor grande, a lo largo de 20 años se produce suficiente combustible para cargar otro reactor de energía similar. En el sistema RARML se aprovecha aproximadamente el 75% de la energía contenida en el uranio natural, frente al 1% del RAL.

    Capítulo VII

    Combustible Nuclear

    Combustible Nuclear

    El Ciclo del Combustible Nuclear son todos los procesos por los cuales se somete al Uranio desde que se extrae de la tierra hasta su utilización en el reactor y su posterior reelaboración o su almacenamiento como residuo. Consta de las siguientes etapas:

    Energía nuclear

  • Primera etapa de Minería y Concentración del Uranio.

  • En esta etapa se extrae el mineral y se separa el Uranio que contiene. Posteriormente se eliminan las impurezas que aún contiene el mineral de Uranio obtenido en el proceso de separación inicial. La concentración del mineral consiste en utilizar procesos físico-químicos para aumentar los contenidos de Uranio a valores superiores al 70%. En todo el proceso se utiliza Uranio natural cuya composición isotópica es de aproximadamente: 99% de Uranio-238, 0,7% de Uranio-235 y 0,006% de Uranio-234.

  • Segunda etapa de Conversión y Enriquecimiento.

  • El Uranio concentrado se purifica por medio de sucesivos tratamientos en disoluciones y precipitaciones hasta que se convierte en un elemento llamado Hexafloruro de Uranio. Posteriormente el Hexafloruro de Uranio se enriquece, es decir, se aumenta la proporción de átomos de Uranio-235 con respecto al Uranio-238. Para ello se realiza una separación selectiva a nivel atómico, utilizando procesos de difusión gaseosa, ultracentrifugación, procesos aerodinámicos, intercambio químico o métodos de separación por láser.

  • Tercera etapa de Fabricación de Elementos Combustibles.

  • El Uranio enriquecido se somete a presión y altas temperaturas para transformarlo en pequeños cuerpos cerámicos. Las pastillas cerámicas se colocan en el interior de unas varillas rellenadas con un gas inerte. Las varillas se apilan en un tubo fabricado de una aleación de circonio, dando forma al llamado Elemento Combustible.

  • Cuarta etapa de Uso del Combustible en un reactor.

  • Los Elementos Combustibles se introducen en el interior del reactor y forman parte del núcleo del mismo. El Uranio presente en los Elementos Combustibles genera las fisiones que activan al reactor y a medida que transcurre el tiempo se gasta, dejando como desecho los productos de fisión, por ejemplo el Plutonio.

    En las centrales de potencia el combustible gastado se almacena temporalmente en la propia instalación, en una piscina especialmente adecuada para ello, lo que permite bajar la actividad de los productos de fisión de vida corta.

  • Quinta etapa de Reelaboración.

  • Se sabe que en el combustible gastado se ha consumido sólo una pequeña fracción del Uranio que contiene. Se procede entonces a la reelaboración del combustible con el objeto de separar el Uranio que aún es utilizable. En el proceso de reelaboración también se pueden aislar ciertas cantidades de Plutonio u otros productos de fisión, los cuales son de utilidad en el funcionamiento de algunos tipos de reactores. La reelaboración es compleja y demanda fuertes inversiones en plantas industriales de alta tecnología.

  • Sexta etapa de Almacenamiento de Residuos.

  • El almacenamiento de los residuos puede ser temporal o definitivo. El almacenamiento temporal supone, en algunos casos, el control y posterior reelaboración del combustible gastado. Si no es posible llevar a cabo la reelaboración el combustible gastado se almacena en forma definitiva.

    Los residuos radiactivos se pueden clasificar según su origen, su forma (sólidos, líquidos, gaseosos), su nivel de radiactividad, por la vida media de los isótopos radiactivos que contienen (de vida larga, de vida corta), por la intensidad de las radiaciones que emiten, por su radiotoxicidad, o bien por sus necesidades de almacenamiento.

    El almacenamiento definitivo generalmente se aplica a aquellos residuos de alta actividad y vida larga, y se puede realizar enterrándolos a distancias relativamente cortas respecto de la superficie terrestre (menos de 20 metros). También, se pueden almacenar en formaciones geológicas de mediana o gran profundidad (decenas a centenares de metros).

    Es importante señalar, que el volumen de residuos radiactivos producidos por una central nuclear dependerá de las características de orden técnico del reactor que los produce. Es así como, los reactores de investigación poseen un núcleo pequeño con alta emisión de neutrones, generando cantidades de residuos bastante menores en comparación a los reactores de potencia.

    Cualquier central de producción de energía eléctrica es sólo parte de un ciclo energético global. El ciclo del combustible de uranio empleado en los sistemas RAL es actualmente el más importante en la producción mundial de energía nuclear

    Un reactor de agua a presión típico de 1.000 MW tiene unos 200 elementos de combustible, de los que una tercera parte se sustituye cada año debido al agotamiento del uranio 235 y a la acumulación de productos de fisión que absorben neutrones.

    El combustible agotado todavía contiene casi todo el uranio 238 original, aproximadamente un tercio del uranio 235 y parte del plutonio 239 producido en el reactor. Cuando el combustible agotado se almacena de forma permanente, se desperdicia todo este contenido potencial de energía. Cuando el combustible se reprocesa, el uranio se recicla en la planta de difusión, y el plutonio 239 recuperado puede sustituir parcialmente al uranio 235 en los nuevos elementos de combustible.

    En el ciclo de combustible del RARML, el plutonio generado en el reactor siempre se recicla para emplearlo como nuevo combustible. Los materiales utilizados en la planta de fabricación de elementos de combustible son uranio 238 reciclado, uranio agotado procedente de la planta de separación isotópica y parte del plutonio 239 recuperado. No es necesario extraer uranio adicional en las minas, puesto que las existencias actuales de las plantas de separación podrían suministrar durante siglos a los reactores auto regenerativos. Como estos reactores producen más plutonio 239 del que necesitan para renovar su propio combustible, aproximadamente el 20% del plutonio recuperado se almacena para su uso posterior en el arranque de nuevos reactores auto regenerativos.

    El paso final en cualquiera de los ciclos de combustible es el almacenamiento a largo plazo de los residuos altamente radiactivos, que continúan presentando peligro para los seres vivos durante miles de años. Varias tecnologías parecen satisfactorias para el almacenamiento seguro de los residuos, pero no se han construido instalaciones a gran escala para demostrar el proceso. Los elementos de combustible pueden almacenarse en depósitos blindados y vigilados hasta que se tome una decisión definitiva sobre su destino, o pueden ser transformados en compuestos estables, fijados en material cerámico o vidrio, encapsulados en bidones de acero inoxidable y enterrados a gran profundidad en formaciones geológicas muy estables.

    Capítulo VIII

    Seguridad Nuclear

    Seguridad Nuclear

    Sistemas de Control.

    Básicamente está constituido por las barras de control y por diversa instrumentación de monitoreo.

    Las barras de control son accionadas por una serie de sistemas mecánicos, eléctricos u electrónicos, de tal manera de asegurar con rapidez la extinción de las reacciones nucleares.

    La instrumentación de monitoreo se ubica en el interior o en el exterior del núcleo del reactor y su finalidad es mantener constante vigilancia de aquellos parámetros necesarios para la seguridad: presión, temperatura, nivel de radiación, etc.

    Sistemas de Contención.

    Energía nuclear

    Constituido por una serie de barreras múltiples que impiden el escape de la radiación y de los productos radiactivos.

    La primera barrera, en cierto tipo de reactores, es un material cerámico que recubre el Uranio utilizado como elemento combustible.

    La segunda barrera es la estructura que contiene al Uranio, es decir, se trata de las barras de combustible.

    La tercera barrera es la vasija que contiene el núcleo del reactor. En los reactores de potencia se denomina vasija de presión y se construye de un acero especial con un revestimiento interior de acero inoxidable.

    La cuarta barrera lo constituye el edificio que alberga al reactor en su conjunto. Se conoce con el nombre de "Edificio de Contención" y se construye de hormigón armado de, a lo menos, 90 cm de espesor. Se utiliza para prevenir posibles escapes de productos radiactivos al exterior, resistir fuertes impactos internos o externos, soportar grandes variaciones de presión y mantener una ligera depresión en su interior que asegure una entrada constante de aire desde el exterior, de tal forma de evitar cualquier escape de material activado.

    El propio agua de refrigeración absorbe parte de los isótopos biológicamente importantes, como el yodo. El edificio de acero y hormigón supone una tercera barrera.

    Durante el funcionamiento de una central nuclear, es inevitable que se liberen algunos materiales radiactivos. La exposición total de las personas que viven en sus proximidades suele representar un porcentaje muy bajo de la radiación natural de fondo. Sin embargo, las principales preocupaciones se centran en la liberación de productos radiactivos causada por accidentes en los que se ve afectado el combustible y fallan los dispositivos de seguridad. El principal peligro para la integridad del combustible es un accidente de pérdida de refrigerante, en el que el combustible resulta dañado o incluso se funde. Los productos de fisión pasan al refrigerante, y si se rompe el sistema de refrigeración, los productos de fisión penetran en el edificio del reactor.

    Los sistemas de los reactores emplean una compleja instrumentación para vigilar constantemente su situación y controlar los sistemas de seguridad empleados para desconectar el reactor en circunstancias anómalas. El diseño de los RAP incluye sistemas de seguridad de refuerzo que inyectan Boro en el refrigerante para absorber neutrones y detener la reacción en cadena, con lo que la desconexión está aún más garantizada. En los reactores de agua ligera, el refrigerante está sometido a una presión elevada. En caso de que se produjera una rotura importante en una tubería, gran parte del refrigerante se convertiría en vapor, y el núcleo dejaría de estar refrigerado. Para evitar una pérdida total de refrigeración del núcleo, los reactores están dotados con sistemas de emergencia para refrigeración del núcleo, que empiezan a funcionar automáticamente en cuanto se pierde presión en el circuito primario de refrigeración. En caso de que se produzca una fuga de vapor al edificio de contención desde una tubería rota del circuito primario de refrigeración, se ponen en marcha refrigeradores por aspersión para condensar el vapor y evitar un peligroso aumento de la presión en el edificio.

    Concepto de Seguridad a Ultranza.

    Toda central nuclear se diseña y construye bajo el concepto de Seguridad a Ultranza, es decir, se privilegia ante todo la seguridad de toda instalación. Se busca reducir al mínimo posible toda exposición a las radiaciones, no sólo en caso de accidente, sino durante las operaciones normales de su personal.

     La preocupación de la opinión pública en torno a la aceptabilidad de la energía nuclear procedente de la fisión se debe a dos características básicas del sistema. La primera es el elevado nivel de radiactividad que existe en diferentes fases del ciclo nuclear, incluida la eliminación de residuos. La segunda es el hecho de que los combustibles nucleares uranio 235 y plutonio 239 son los materiales con que se fabrican las armas nucleares.

    En la década de 1950 se pensó que la energía nuclear podía ofrecer un futuro de energía barata y abundante. La industria energética confiaba en que la energía nuclear sustituyera a los combustibles fósiles, cada vez más escasos, y disminuyera el coste de la electricidad. Los grupos preocupados por la conservación de los recursos naturales preveían una reducción de la contaminación atmosférica y de la minería a cielo abierto. La opinión pública era en general favorable a esta nueva fuente de energía, y esperaba que el uso de la energía nuclear pasara del terreno militar al civil. Sin embargo, después de esta euforia inicial, crecieron las reservas en torno a la energía nuclear a medida que se estudiaban más profundamente las cuestiones de seguridad nuclear y proliferación de armamento. En todos los países del mundo existen grupos opuestos a la energía nuclear, y las normas estatales se han hecho complejas y estrictas. Suecia, por ejemplo, pretende limitar su programa a unos 10 reactores. Austria ha cancelado su programa. En cambio, Gran Bretaña, Francia, Alemania y Japón siguen avanzando en este terreno.

    El Consejo de Seguridad Nuclear (CSN) es el organismo encargado de velar en España por la seguridad nuclear y la protección radiológica. Informa sobre la concesión o retirada de autorizaciones, inspecciona la construcción, puesta en marcha y explotación de instalaciones nucleares o radiactivas, participa en la confección de planes de emergencia y promociona la realización de trabajos de investigación.

    Capítulo IX

    Accidentes y Usos Bélicos

    De la energía Nuclear

    Accidentes Nucleares

     A pesar de las numerosas medidas de seguridad, en 1979 llegó a producirse un accidente en el RAP de Three Mile Island, cerca de Harrisburg (Pennsylvania, EEUU). Un error de mantenimiento y una válvula defectuosa llevaron a una pérdida de refrigerante. Cuando comenzó el accidente, el sistema de seguridad desconectó el reactor, y el sistema de emergencia para enfriamiento del núcleo empezó a funcionar poco tiempo después según lo prescrito. Pero entonces, como resultado de un error humano, el sistema de refrigeración de emergencia se desconectó, lo que provocó graves daños en el núcleo e hizo que se liberaran productos de fisión volátiles procedentes de la vasija del reactor. Aunque sólo una pequeña cantidad de gas radiactivo salió del edificio de contención (lo que llevó a un ligero aumento de los niveles de exposición en los seres humanos), los daños materiales en la instalación fueron muy grandes, de unos 1.000 millones de dólares o más, y la tensión psicológica a la que se vio sometida la población, especialmente las personas que vivían cerca de la central nuclear, llegó a ser muy grave en algunos casos.

    La investigación oficial sobre el accidente citó como causas principales del mismo un error de manejo y un diseño inadecuado de la sala de control, y no un simple fallo del equipo. Esto llevó a la entrada en vigor de leyes que exigían a la Comisión de Regulación Nuclear de Estados Unidos que adoptara normas mucho más estrictas para el diseño y la construcción de centrales nucleares, y obligaban a las compañías eléctricas a ayudar a las administraciones de los estados y los condados a preparar planes de emergencia para proteger a la población en caso de que se produjera otro accidente semejante.

    Desde 1981, las cargas financieras impuestas por estas exigencias han hecho tan difícil la construcción y el funcionamiento de nuevas centrales nucleares que las compañías eléctricas de los estados de Washington, Ohio, New Hampshire e Indiana se vieron obligadas a abandonar centrales parcialmente terminadas después de gastar en ellas miles de millones de dólares. En 1988, se calculaba que el coste acumulado para la economía estadounidense por el cierre de esas centrales, sumado a la finalización de centrales con unos costes muy superiores a los inicialmente previstos, ascendía nada menos que a 100.000 millones de dólares.

    En Ucrania, a unos 100 kilómetros al sur de Kiev el 26 de abril de 1986 a la 1:23 hs. de (Moscú) el rector numero 4 de la central nuclear de Chernobyl sufre el mayor accidente nuclear conocido en su tipo hasta el presente.

    Solo 90 minutos después de haberse decidido reducir paulatinamente la potencia de generación para iniciar un test en el circuito refrigerador del reactor una suma de circunstancias atribuibles a fallas en los sistemas de control, la riesgosa desactivación del sistema de seguridad exigida por el test y la ineficaz actuación de los operadores ante la emergencia desatan la catástrofe. A solo 2 minutos de haberse iniciado una incontrolada generación de vapor en el núcleo del reactor queda fuera de control, superando en 100 veces los máximos admitidos; estallan por sobrepresion los conductos de alimentación y la coraza protectora de grafito del núcleo produciéndose un pavoroso incendio y la expulsión al exterior de 8 toneladas de combustible radiactivo tras una doble explosión.

    Las consecuencias de la catástrofe afectaran a un área con casi 5 millones de habitantes. Las brigadas especializadas enfrentarán la heroica tarea de sofocar los incendios y neutralizar las fugas radiactivas, al menos 30 de sus integrantes morirán por exposición radiactiva letal.

    Las personas más próximas al reactor recibieron una radiación unas 50 veces superior a la de Three Mile Island, y una nube de lluvia radiactiva se dirigió hacia el Oeste. La nube radiactiva se extendió por Escandinavia y el norte de Europa, según descubrieron observadores suecos el 28 de abril. A diferencia de la mayoría de los reactores de los países occidentales, el reactor de Chernobil carecía de edificio de contención. Una estructura semejante podría haber impedido que el material saliera del reactor. Unas 135.000 fueron evacuadas en un radio de 1.600 kilómetros. La central fue sellada con hormigón; en 1988, sin embargo, los otros tres reactores de Chernobil ya estaban funcionando de nuevo.

    Una década y media mas tarde la evaluación de víctimas totales por contaminación directa o por consecuencias indirectas de la catástrofe ascendía a 20.000 personas muertas o con pronóstico fatal debido a las afecciones contraídas debido a la radiación y cerca de 300.000 aquejadas por distintos tipos de cáncer.

    En la central de Vandellòs I, situada en la provincia de Tarragona (España), y con un reactor de tipo grafito-gas, se produjo, el 19 de octubre de 1989, un accidente que se inició por un incendio en un edificio convencional de la central, que generó una serie sucesiva de fallos de sistemas. Pese a todo, se consiguió llevar la central a la situación de parada segura. No se produjo eliminación de CO2 del circuito de refrigeración, ni se produjo daño alguno a las personas que intervinieron en el control de la central.

    Usos Bélicos

    Armas nucleares

    Dispositivos explosivos, utilizados sobre todo por militares, que liberan energía nuclear a gran escala. La primera bomba atómica (o bomba A) fue probada el 16 de julio de 1945 cerca de Alamogordo, Nuevo México. Se trataba de un tipo completamente nuevo de explosivo. Hasta ese momento todos los explosivos obtenían su potencia de la descomposición o combustión rápida de algún compuesto químico. Las reacciones químicas de este tipo sólo liberan la energía de los electrones más externos del átomo.

    En cambio, los explosivos nucleares ponen en juego la energía contenida en el núcleo del átomo. La bomba A obtenía su potencia de la ruptura o fisión de los núcleos atómicos de varios kilos de plutonio. Una esfera del tamaño de una pelota de béisbol produjo una explosión equivalente a 20.000 toneladas de Trinitrotolueno (TNT).

    La bomba A se desarrolló, construyó y probó en el marco del Proyecto Manhattan. Se trataba de una extraordinaria empresa estadounidense iniciada en 1942 durante la II Guerra Mundial. En ella participaron muchos científicos eminentes, como los físicos Enrico Fermi, Richard Feynman y Edward Teller, y el químico Harold Urey. El director militar era el ingeniero del Ejército de los Estados Unidos comandante general Leslie Groves. El director científico del proyecto, localizado en Los Álamos (Nuevo México) fue el físico estadounidense J. Robert Oppenheimer.

    Durante la II Guerra Mundial, Estados Unidos arrojó la primera bomba atómica sobre la ciudad, el 6 de agosto de 1945. El mando supremo aliado informó que 129.558 personas murieron, fueron heridas o desaparecieron a causa del lanzamiento, y más de 176.987 perdieron sus hogares. La población de Hiroshima en 1940 había sido de 343.698 habitantes. La explosión arrasó más de 10 km2 de terreno, cerca del 60% de la superficie de la ciudad.

    El 9 de agosto de 1945, tres días después de que Hiroshima fuera destruida, un avión de las Fuerzas Aéreas estadounidenses lanzó una bomba atómica sobre Nagasaki. Aproximadamente la tercera parte de la ciudad quedó destruida y unas 66.000 personas murieron o resultaron heridas.

    Energía nuclear


    Pruebas termonucleares

    Después de algunas pruebas experimentales llevadas a cabo en la primavera de 1951 en la zona de pruebas de Estados Unidos en las islas Marshall, el 1 de noviembre de 1952 se realizó con éxito la primera prueba a gran escala de un dispositivo de fusión. Esta bomba, llamada Mike, produjo una explosión de la potencia de varios millones de toneladas de TNT (es decir, varios megatones). La Unión Soviética detonó una bomba termonuclear de más de un megatón en agosto de 1953, mucho antes de lo que se esperaba. El 1 de marzo de 1954, Estados Unidos hizo explotar una bomba de fusión de una potencia de 15 megatones. Provocó una bola de fuego de más de 4,8 kilómetros de diámetro y una enorme nube en forma de hongo, que se elevó con mucha rapidez hasta la estratosfera.

    La explosión de marzo de 1954 dio lugar a que se reconociera mundialmente la existencia de la lluvia radiactiva. La lluvia de desechos radiactivos procedentes del hongo atómico reveló también muchas cosas sobre la naturaleza de una bomba termonuclear. Si la bomba hubiese sido una bomba A, como detonador de un núcleo de isótopos de hidrógeno, la única radiactividad persistente hubiera sido la de los restos de la fisión del detonador y la inducida por los neutrones en el agua de mar y en los corales. Pero algunos residuos radiactivos cayeron en un barco japonés llamado el Dragón afortunado, un atunero que se encontraba a 160 kilómetros del lugar de la explosión. El polvo radiactivo fue analizado con posterioridad por científicos japoneses y sus resultados probaban que la bomba cuyos residuos se habían recogido sobre el Dragón afortunado era algo más que una bomba H.

    Energía nuclear

    Capítulo X

    Usos Pacíficos de la Energía Nuclear

    Usos Pacíficos de la Energía

    Nuclear

    Gracias al uso de reactores nucleares hoy, en día es posible obtener importantes cantidades de material radiactivo a bajo costo. Es así como desde finales de los años 40, se produce una expansión en el empleo pacífico de diversos tipos de Isótopos Radiactivos en diversas áreas del quehacer científico y productivo del hombre.

    Estas áreas se pueden clasificar en:

    Agricultura y Alimentación

    Medicina

    Medio Ambiente

    Hidrología

    Industria e Investigación

    Agricultura y Alimentación

    a) Control de Plagas.
    Se sabe que algunos insectos pueden ser muy perjudiciales tanto para la calidad y productividad de cierto tipo de cosechas, como para la salud humana. En muchas regiones del planeta aún se les combate con la ayuda de gran variedad de productos químicos, muchos de ellos cuestionados o prohibidos por los efectos nocivos que producen en el organismo humano. Sin embargo, con la tecnología nuclear es posible aplicar la llamada "Técnica de los Insectos Estériles (TIE)", que consiste en suministrar altas emisiones de radiación ionizante a un cierto grupo de insectos machos mantenidos en laboratorio. Luego los machos estériles se dejan en libertad para facilitar su apareamiento con los insectos hembra. No se produce, por ende, la necesaria descendencia. De este modo, luego de sucesivas y rigurosas repeticiones del proceso, es posible controlar y disminuir su población en una determinada región geográfica. En Chile, se ha aplicado con éxito la técnica TIE para el control de la mosca de la fruta, lo que ha permitido la expansión de sus exportaciones agrícolas.

    b) Mutaciones.
    La irradiación aplicada a semillas, después de importantes y rigurosos estudios, permite cambiar la información genética de ciertas variedades de plantas y vegetales de consumo humano. El objetivo de la técnica, es la obtención de nuevas variedades de especies con características particulares que permitan el aumento de su resistencia y productividad.

    c) Conservación de Alimentos.
    En el mundo mueren cada año miles de personas como producto del hambre, por lo tanto, cada vez existe mayor preocupación por procurar un adecuado almacenamiento y mantención de los alimentos. Las radiaciones son utilizadas en muchos países para aumentar el período de conservación de muchos alimentos. Es importante señalar, que la técnica de irradiación no genera efectos secundarios en la salud humana, siendo capaz de reducir en forma considerable el número de organismos y microorganismos patógenos presentes en variados alimentos de consumo masivo.

    La irradiación de alimentos es aplicada en Chile en una planta de irradiación multipropósito ubicada en el Centro de Estudios Nucleares Lo Aguirre, con una demanda que obliga a su funcionamiento ininterrumpido durante los 365 días del año.

    Hidrología

    Gracias al uso de las técnicas nucleares es posible desarrollar diversos estudios relacionados con recursos hídricos. En estudios de aguas superficiales es posible caracterizar y medir las corrientes de aguas lluvias y de nieve; caudales de ríos, fugas en embalses, lagos y canales y la dinámica de lagos y depósitos.

    En estudios de aguas subterráneas es posible medir los caudales de las napas, identificar el origen de las aguas subterráneas, su edad, velocidad, dirección, flujo, relación con aguas superficiales, conexiones entre acuíferos, porosidad y dispersión de acuíferos.

    Medicina

    a) Vacunas.
    Se han elaborado radio vacunas para combatir enfermedades parasitarias del ganado y que afectan la producción pecuaria en general. Los animales sometidos al tratamiento soportan durante un período más prolongado el peligro de reinfección siempre latente en su medio natural.

    b) Medicina Nuclear.
    Se ha extendido con gran rapidez el uso de radiaciones y de radioisótopos en medicina como agentes terapéuticos y de diagnóstico.

    En el diagnóstico se utilizan radio fármacos para diversos estudios de:

    • Tiroides.

    • Hígado.

    • Riñón.

    • Metabolismo.

    • Circulación sanguínea.

    • Corazón.

    • Pulmón.

    • Trato gastrointestinales.

    En terapia médica con las técnicas nucleares se puede combatir ciertos tipos de cáncer. Con frecuencia se utilizan tratamientos en base a irradiaciones con rayos gamma provenientes de fuentes de Cobalto-60, así como también, esferas internas radiactivas, agujas e hilos de Cobalto radiactivo. Combinando el tratamiento con una adecuada y prematura detección del cáncer, se obtienen terapias con exitosos resultados.

    c) Radioinmunoanálisis.

    Se trata de un método y procedimiento de gran sensibilidad utilizado para realizar mediciones de hormonas, enzimas, virus de la hepatitis, ciertas proteínas del suero, fármacos y variadas sustancias.
    El procedimiento consiste en tomar muestras de sangre del paciente, donde con posterioridad se añadirá algún radioisótopo específico, el cual permite obtener mediciones de gran precisión respecto de hormonas y otras sustancias de interés.

    d) Radio fármacos.
    Se administra al paciente un cierto tipo de fármaco radiactivo que permite estudiar, mediante imágenes bidimensionales (centelleografía) o tridimensionales (tomografía), el estado de diversos órganos del cuerpo humano.

    De este modo se puede examinar el funcionamiento de la tiroides, el pulmón, el hígado y el riñón, así como el volumen y circulación sanguíneos. También, se utilizan radio fármacos como el Cromo - 51 para la exploración del bazo, el Selenio - 75 para el estudio del páncreas y el Cobalto - 57 para el diagnóstico de la anemia.

    Medio Ambiente

    En esta área se utilizan técnicas nucleares para la detección y análisis de diversos contaminantes del medio ambiente. La técnica más conocida recibe el nombre de Análisis por Activación Neutrónica, basado en los trabajos desarrollados en 1936 por el científico húngaro J.G. Hevesy, Premio Nobel de Química en 1944. La técnica consiste en irradiar una muestra, de tal forma, de obtener a posteriori los espectros gamma que ella emite, para finalmente procesar la información con ayuda computacional. La información espectral identifica los elementos presentes en la muestra y las concentraciones de los mismos.

    Una serie de estudios se han podido aplicar a diversos problemas de contaminación como las causadas por el bióxido de azufre, las descargas gaseosas a nivel del suelo, en derrames de petróleo, en desechos agrícolas, en contaminación de aguas y en el smog generado por las ciudades.

    Industria e Investigación

    a) Trazadores.
    Se elaboran sustancias radiactivas que son introducidas en un determinado proceso. Luego se detecta la trayectoria de la sustancia gracias a su emisión radiactiva, lo que permite investigar diversas variables propias del proceso. Entre otras variables, se puede determinar caudales de fluidos, filtraciones, velocidades en tuberías, dinámica del transporte de materiales, cambios de fase de líquido a gas, velocidad de desgaste de materiales, etc.

    b) Instrumentación.
    Son instrumentos radioisótopicos que permiten realizar mediciones sin contacto físico directo. Se utilizan indicadores de nivel, de espesor o bien de densidad.

    c) Imágenes.
    Es posible obtener imágenes de piezas con su estructura interna utilizando radiografías en base a rayos gamma o bien con un flujo de neutrones. Estas imágenes reciben el nombre de Gammagrafía y Neutrografía respectivamente, y son de gran utilidad en la industria como método no destructivo de control de calidad. Con estos métodos se puede comprobar la calidad en soldaduras estructurales, en piezas metálicas fundidas, en piezas cerámicas, para análisis de humedad en materiales de construcción, etc.

    d) Datación.
    Se emplean técnicas isotópicas para determinar la edad en formaciones geológicas y arqueológicas. Una de las técnicas utiliza el Carbono-14, que consiste en determinar la cantidad de dicho isótopo contenida en un cuerpo orgánico. La radiactividad existente, debida a la presencia de Carbono-14, disminuye a la mitad cada 5730 años, por lo tanto, al medir con precisión su actividad se puede inferir la edad de la muestra.

    e) Investigación.
    Utilizando haces de neutrones generados por reactores, es posible llevar a cabo diversas investigaciones en el campo de las ciencias de los materiales. Por ejemplo, se puede obtener información respecto de estructuras cristalinas, defectos en sólidos, estudios de monocristales, distribuciones y concentraciones de elementos livianos en función de la profundidad en sólidos, etc.

    En el ámbito de la biología, la introducción de compuestos radiactivos marcados ha permitido observar las actividades biológicas hasta en sus más mínimos detalles, dando un gran impulso a los trabajos de carácter genético.

    Glosario

    Electrón

    Partícula elemental con carga eléctrica negativa y que forma parte de la constitución atómica. Su masa es de aproximadamente 8,54 x 10-31 kg, y su carga es de 1,6 x 10-19 Coulomb.

    Fotón

    Es una partícula elemental que representa una cantidad discreta de energía electromagnética. El fotón no tiene masa en reposo y no tiene carga eléctrica. Hoy día se acepta el hecho de que la luz se compone de fotones que viajan a una velocidad aproximada de 300.000 km/s.

    Mega Electrón-Volt (Mev)

    Es una unidad de energía. Se lee como "mega - electrón - volt". 1 MeV equivale a 1.000.000 de eV (electrón - volt). 1 eV es igual a 1,6 X 10-19 Joule.

    Un eV es la energía que experimenta un electrón cuando se encuentra en un campo eléctrico, cuya diferencia de potencial es de 1 volt.

    Neutrón

    Partícula elemental que no posee carga eléctrica y que forma parte de los núcleos atómicos. Cuando se desintegra, como producto de un proceso físico, emite un neutrino (partícula neutra de masa en reposo igual a 0). La masa del neutrón es de aproximadamente 1,64 x 10-27 kg.

    Núcleo Atómico

    El núcleo atómico es parte fundamental de la constitución del átomo. Se encuentra formado fundamentalmente por protones y neutrones, los cuales se mantienen unidos por las llamadas fuerzas nucleares. Su masa representa a casi la totalidad de la masa atómica.

    Partículas Elementales

    Son partículas elementales aquellas que forman parte de la estructura de los átomos, y por lo tanto, representan el último constituyente de la materia.

    Plasma Físico

    El plasma físico es una mezcla de partículas cargadas eléctricamente. Cuando se encuentra en equilibrio, la carga negativa total del sistema es igual a la carga positiva total. Bajo estas condiciones el plasma es un medio eléctricamente neutro que conduce a la perfección la corriente eléctrica. Sin embargo, en desequilibrio surgen en el plasma campos eléctricos de gran magnitud.

    Con frecuencia se reconocen dos tipos de plasmas físicos: el plasma débil y el fuertemente ionizado. El plasma débil contiene fundamentalmente electrones e iones positivos. El plasma fuertemente ionizado contiene además átomos y moléculas excitados y neutros. Si los electrones, iones, átomos y moléculas del plasma presentan diversas temperaturas se habla de la existencia de un plasma no isotérmico. Si estos componentes tienen igual temperatura se habla de un plasma isotérmico.

    Protón

    Partícula elemental de carga eléctrica positiva que forma parte de la estructura básica del núcleo atómico. Su masa es de 1,672 x 10-27 kg.

    Reacción Nuclear en Cadena

    Es una sucesión de fisiones nucleares que ocurren en forma casi simultánea. Supongamos que en una fisión nuclear se liberan 2 neutrones. Estos neutrones que se han liberado pueden fisionar 2 nuevos núcleos atómicos, de donde se liberan 4 nuevos neutrones, los que a su vez harán impacto sobre 4 núcleos atómicos, y así sucesivamente.

    Energía nuclear

    Relación Masa - Energía

    Albert Einstein, por medio de su famosa relación E= mc2, indica que la energía y la masa son equivalentes, es decir, son una misma cosa, pero se encuentran en distinto estado. Por lo tanto, dada ciertas condiciones físicas, un cuerpo puede transformar su masa en energía.

    Uranio

    Mineral que se encuentra en la naturaleza bajo 150 formas diferentes. Es así como se puede presentar en forma primaria (como Uranita), en forma oxidada, o en forma refractaria. También se le puede encontrar como subproducto en la fabricación de fosfatos, en las minas de Cobre o en el agua de mar.

    Las mayores reservas de Uranio se encuentran en África, específicamente en Namibia, Níger, Gabón y Sudáfrica. En Sudamérica destacan las reservas de Argentina y Brasil.

    La composición del Uranio natural es de aproximadamente 99,3% en el isótopo del Uranio 238, y de un 0,7% en Uranio 235.

    Conclusiones

    Por medio de este trabajo aprendí acerca de los diferentes tipos de reactores nucleares que existen en el mundo como el Reactor de agua a presión PWR (Pressure water Reactor) y el Reactor de agua en ebullición BWR (Boiling water Reactor).

    También comprendí el peligro de la exposición a la radiación y las enfermedades que esta pueda acarrear como el cáncer. Además el peligro que conlleva el sobrecalentamiento del núcleo de un reactor a la temperatura de los 2,500 grados centígrados y la explosión que le sigue.

    Llegué a la conclusión de que Guatemala en un futuro no muy lejano podrá llegar usar este sistema de energía; que se encuentra inexplorado en este país, a pesar de las medidas y riesgos que esta traiga consigo.

    Por último concluyo que la energía nuclear por medio de la fusión puede llegar a significar un avance rotundo para nuestro planeta, terminando así el uso de la fusión y los resto nucleares altamente radioactivos que esta produce.

    Bibliografía

  • "Partículas Subatómicas" , Steven Weinberg, Editorial Losada, 1985.

  • "Para Comprender el Átomo", Fritz Kahn, Ediciones Destino - Barcelona, 1960.

  • "Apuntes de Elementos de Física Nuclear" , Ing. Manuel Echeverría, CCHEN, 1995.

  • "Energía Nuclear", Erik Herrera, Juan Galvez, Lila Trujillo, CCHEN, 1984.

  • "El Cuaderno de La Energía", García Alonso, Forum Atómico Español, 1989.

  • "Vigilancia y Control de Los Residuos Radiactivos", Consejo de Seguridad Nuclear de España, 1993.

  • "Protección Radiológica", Consejo de Seguridad Nuclear de España, 1992.

  • "Utilización de la Energía Nuclear Para la Producción de Energía Eléctrica", Consejo de Seguridad Nuclear de España, 1992.

  • "Radiaciones Ionizantes y No Ionizantes", Consejo de Seguridad Nuclear de España, 1994.

  • Enciclopedia Microsoft Encarta 2000', Artículos “Energía Nuclear”, “Armas Nucleares”, e “Hiroshima.”

  • Energía Nuclear

    1

    Energía nuclear

    Energía nuclear

    Energía nuclear

    Henri Becquerel Marie y Pierre Curie

    Energía nuclear

    Energía nuclear

    Energía nuclear

    Energía nuclear

    Energía nuclear




    Descargar
    Enviado por:Jey
    Idioma: castellano
    País: Guatemala

    Te va a interesar