Ecología y Medio Ambiente
Contaminación del agua
Contaminación del agua.
Introducción: Importancia del problema
Los ríos, lagos y mares recogen, desde tiempos inmemoriales, las basuras producidas por la actividad humana.
El ciclo natural del agua tiene una gran capacidad de purificación. Pero esta misma facilidad de regeneración del agua, y su aparente abundancia, hace que sea el vertedero habitual en el que arrojamos los residuos producidos por nuestras actividades. Pesticidas, desechos químicos, metales pesados, residuos radiactivos, etc., se encuentran, en cantidades mayores o menores, al analizar las aguas de los más remotos lugares del mundo. Muchas aguas están contaminadas hasta el punto de hacerlas peligrosas para la salud humana, y dañinas para la vida. La degradación de las aguas viene de antiguo y en algunos lugares, como la desembocadura del Nilo, hay niveles altos de contaminación desde hace siglos; pero ha sido en este siglo cuando se ha extendido este problema a ríos y mares de todo el mundo.
Primero fueron los ríos, las zonas portuarias de las grandes ciudades y las zonas industriales las que se convirtieron en sucias cloacas, cargadas de productos químicos, espumas y toda clase de contaminantes. Con la industrialización y el desarrollo económico este problema se ha ido trasladando a los países en vías de desarrollo, a la vez que en los países desarrollados se producían importante mejoras.
Substancias contaminantes del agua
Hay un gran número de contaminantes del agua que se pueden clasificar de muy diferentes maneras. Una posibilidad bastante usada es agruparlos en los siguientes ocho grupos:
1. Microorganismos patógenos. Son los diferentes tipos de bacterias, virus, protozoos y otros organismos que transmiten enfermedades como el cólera, tifus, gastroenteritis diversas, hepatitis, etc. En los países en vías de desarrollo las enfermedades producidas por estos patógenos son uno de los motivos más importantes de muerte prematura, sobre todo de niños.
Normalmente estos microbios llegan al agua en las heces y otros restos orgánicos que producen las personas infectadas. Por esto, un buen índice para medir la salubridad de las aguas, en lo que se refiere a estos microorganismos, es el número de bacterias coliformes presentes en el agua. La OMS (Organización Mundial de la Salud) recomienda que en el agua para beber haya 0 colonias de coliformes por 100 ml de agua.
2. Desechos orgánicos. Son el conjunto de residuos orgánicos producidos por los seres humanos, ganado, etc. Incluyen heces y otros materiales que pueden ser descompuestos por bacterias aeróbicas, es decir en procesos con consumo de oxígeno. Cuando este tipo de desechos se encuentran en exceso, la proliferación de bacterias agota el oxígeno, y ya no pueden vivir en estas aguas peces y otros seres vivos que necesitan oxígeno. Buenos índices para medir la contaminación por desechos orgánicos son la cantidad de oxígeno disuelto, OD, en agua, o la DBO (Demanda Biológica de Oxígeno).
3. Sustancias químicas inorgánicas. En este grupo están incluidos ácidos, sales y metales tóxicos como el mercurio y el plomo. Si están en cantidades altas pueden causar graves daños a los seres vivos, disminuir los rendimientos agrícolas y corroer los equipos que se usan para trabajar con el agua.
4. Nutrientes vegetales inorgánicos. Nitratos y fosfatos son sustancias solubles en agua que las plantas necesitan para su desarrollo, pero si se encuentran en cantidad excesiva inducen el crecimiento desmesurado de algas y otros organismos provocando la eutrofización de las aguas. Cuando estas algas y otros vegetales mueren, al ser descompuestos por los microorganismos, se agota el oxígeno y se hace imposible la vida de otros seres vivos. El resultado es un agua maloliente e inutilizable.
5. Compuestos orgánicos. Muchas moléculas orgánicas como petróleo, gasolina, plásticos, plaguicidas, disolventes, detergentes, etc. acaban en el agua y permanecen, en algunos casos, largos períodos de tiempo, porque, al ser productos fabricados por el hombre, tienen estructuras moleculares complejas difíciles de degradar por los microorganismos.
6. Sedimentos y materiales suspendidos. Muchas partículas arrancadas del suelo y arrastradas a las aguas, junto con otros materiales que hay en suspensión en las aguas, son, en términos de masa total, la mayor fuente de contaminación del agua. La turbidez que provocan en el agua dificulta la vida de algunos organismos, y los sedimentos que se van acumulando destruyen sitios de alimentación o desove de los peces, rellenan lagos o pantanos y obstruyen canales, rías y puertos.
7. Sustancias radiactivas. Isótopos radiactivos solubles pueden estar presentes en el agua y, a veces, se pueden ir acumulando a los largo de las cadenas tróficas, alcanzando concentraciones considerablemente más altas en algunos tejidos vivos que las que tenían en el agua.
8. Contaminación térmica. El agua caliente liberada por centrales de energía o procesos industriales eleva, en ocasiones, la temperatura de ríos o embalses con lo que disminuye su capacidad de contener oxígeno y afecta a la vida de los organismos.
Concepto de eutrofización
Un río, un lago o un embalse sufren eutrofización cuando sus aguas se enriquecen en nutrientes. Podría parecer a primera vista que es bueno que las aguas estén bien repletas de nutrientes, porque así podrían vivir más fácil los seres vivos. Pero la situación no es tan sencilla. El problema está en que si hay exceso de nutrientes crecen en abundancia las plantas y otros organismos. Más tarde, cuando mueren, se pudren y llenan el agua de malos olores y le dan un aspecto nauseabundo, disminuyendo drásticamente su calidad.
El proceso de putrefacción consume una gran cantidad del oxígeno disuelto y las aguas dejan de ser aptas para la mayor parte de los seres vivos. El resultado final es un ecosistema casi destruido.
Agua eutrófica y oligotrófica
Cuando un lago o embalse es pobre en nutrientes (oligotrófico) tiene las aguas claras, la luz penetra bien, el crecimiento de las algas es pequeño y mantiene a pocos animales. Las plantas y animales que se encuentran son los característicos de aguas bien oxigenadas como las truchas.
Al ir cargándose de nutrientes el lago se convierte en eutrófico. Crecen las algas en gran cantidad con lo que el agua se enturbia. Las algas y otros organismos, cuando mueren, son descompuestos por la actividad de las bacterias con lo que se gasta el oxígeno. No pueden vivir peces que necesitan aguas ricas en oxígeno, por eso en un lago de estas características encontraremos barbos, percas y otros organismos de aguas poco ventiladas. En algunos casos se producirán putrefacciones anaeróbicas acompañadas de malos olores Las aguas son turbias y de poca calidad desde el punto de vista del consumo humano o de su uso para actividades deportivas. El fondo del lago se va rellenando de sedimentos y su profundidad va disminuyendo.
Nutrientes que eutrofizan las aguas
Los nutrientes que más influyen en este proceso son los fosfatos y los nitratos. En algunos ecosistemas el factor limitante es el fosfato, como sucede en la mayoría de los lagos de agua dulce, pero en muchos mares el factor limitante es el nitrógeno para la mayoría de las especies de plantas.
En los últimos 20 o 30 años las concentraciones de nitrógeno y fósforo en muchos mares y lagos casi se han duplicado. La mayor parte les llega por los ríos. En el caso del nitrógeno, una elevada proporción (alrededor del 30%) llega a través de la contaminación atmosférica. El nitrógeno es más móvil que el fósforo y puede ser lavado a través del suelo o saltar al aire por evaporación del amoniaco o por desnitrificación. El fósforo es absorbido con más facilidad por las partículas del suelo y es arrastrado por la erosión erosionadas o disuelto por las aguas de escorrentía superficiales.
En condiciones naturales entra a un sistema acuático menos de 1Kg de fosfato por hectárea y año. Con los vertidos humanos esta cantidad sube mucho. Durante muchos años los jabones y detergentes fueron los principales causantes de este problema. En las décadas de los 60 y 70 el 65% del peso de los detergentes era un compuesto de fósforo, el tripolifosfato sódico, que se usaba para "sujetar" (quelar) a los iones Ca, Mg, Fe y Mn. De esta forma se conseguía que estos iones no impidieran el trabajo de las moléculas surfactantes que son las que hacen el lavado. Estos detergentes tenían alrededor de un 16% en peso de fósforo. El resultado era que los vertidos domésticos y de lavanderías contenían una gran proporción de ion fosfato. A partir de 1973 Canadá primero y luego otros países, prohibieron el uso de detergentes que tuvieran más de un 2,2% de fósforo, obligando así a usar otros quelantes con menor contenido de este elemento. Algunas legislaciones han llegado a prohibir los detergentes con más de 0,5% de fósforo.
Fuentes de eutrofización
a) Eutrofización natural.- La eutrofización es un proceso que se va produciendo lentamente de forma natural en todos los lagos del mundo, porque todos van recibiendo nutrientes.
b) Eutrofización de origen humano.- Los vertidos humanos aceleran el proceso hasta convertirlo, muchas veces, en un grave problema de contaminación. Las principales fuentes de eutrofización son:
-
los vertidos urbanos, que llevan detergentes y desechos orgánicos
-
los vertidos ganaderos y agrícolas, que aportan fertilizantes, desechos orgánicos y otros residuos ricos en fosfatos y nitratos.
Medida del grado de eutrofización
Para conocer el nivel de eutrofización de un agua determinada se suele medir el contenido de clorofila de algas en la columna de agua y este valor se combina con otros parámetros como el contenido de fósforo y de nitrógeno y el valor de penetración de la luz.
Medidas para evitar la eutrofización
Lo más eficaz para luchar contra este tipo de contaminación es disminuir la cantidad de fosfatos y nitratos en los vertidos, usando detergentes con baja proporción de fosfatos, empleando menor cantidad de detergentes, no abonando en exceso los campos, usando los desechos agrícolas y ganaderos como fertilizantes, en vez de verterlos, etc. En concreto:
-
Tratar las aguas residuales en EDAR (estaciones depuradoras de aguas residuales) que incluyan tratamientos biológicos y químicos que eliminan el fósforo y el nitrógeno.
-
Almacenar adecuadamente el estiércol que se usa en agricultura.
-
Usar los fertilizantes más eficientemente.
-
Cambiar las prácticas de cultivo a otras menos contaminantes. Así, por ejemplo, retrasar el arado y la preparación de los campos para el cultivo hasta la primavera y plantar los cultivos de cereal en otoño asegura tener cubiertas las tierras con vegetación durante el invierno con lo que se reduce la erosión.
Reducir las emisiones de NOx y amoniaco.
Contaminación de mares y costas.
El vertedero final para una gran parte de nuestros desechos es el océano. A él van a parar gran parte de los vertidos urbanos e industriales. No sólo recibe las aguas residuales, sino que, en muchas ocasiones, se usa para arrojar las basuras o, incluso, los residuos radiactivos.
El 80% de las substancias que contaminan el mar tienen su origen en tierra. De las fuentes terrestres la contaminación difusa es la más importante. Incluye pequeños focos como tanques sépticos, coches, camiones, etc. y otros mayores como granjas, tierras de cultivo, bosques, etc. Los accidentes marítimos son responsables de alrededor de un 5% de los hidrocarburos vertidos en el mar. En cambio, una ciudad de cinco millones de habitantes acaba vertiendo en un año la misma cantidad que derramó el Exxon Valdez en su accidente en Alaska.
Aproximadamente un tercio de la contaminación que llega a los mares empieza siendo contaminación atmosférica pero después acaba cayendo a los océanos.
En los fondos oceánicos hay, en este momento, decenas de miles de barriles con substancias como plutonio, cesio o mercurio, resultado de décadas de uso del océano como vertedero para grandes cantidades de desechos. Por ejemplo, como consecuencia de los accidentes sufridos por diversos barcos de guerra desde 1956 hasta 1989, ocho reactores nucleares completos, con todo su combustible, y 50 armas nucleares, se encuentran en el fondo de diversos mares del globo.
El exceso de aporte de nutrientes causa eutrofización en grandes zonas marítimas. En la desembocadura del Mississippi, por ejemplo, una zona de unas 4000 millas cuadradas, en las costas de Texas y Louisiana, ha perdido gran parte de su fauna como consecuencia del enriquecimiento de nutrientes continuado por el excesivo crecimiento de las algas y del empobrecimiento en oxígeno provocado por la putrefacción de estas algas.
Alrededor del 60% de las especies viven en la franja de 60 Km más próxima a la costa. Todos ellos se ven especialmente afectados por la contaminación que afecta a los mares y océanos, especialmente en la cercanía de las costas, lo que es especialmente importante teniendo en cuenta que, según algunos cálculos, procede de las costas algo más de la mitad de todos los servicios que la naturaleza, en su conjunto, provee a la humanidad (que en un estudio hecho en 1987 se evaluaron en 21.500 miles de millones de dólares)
La capacidad purificadora de las grandes masas de agua marina es muy grande. En ellas se diluyen, dispersan o degradan ingentes cantidades de aguas fecales, hidrocarburos, desechos industriales e, incluso, materiales radiactivos. Por este motivo es muy tentador recurrir al barato sistema de arrojar al mar los residuos de los que queremos deshacernos; pero en muchos lugares, los excesos cometidos han convertido grandes zonas del mar en desiertos de vida o en cloacas malolientes.
Costas.
Las zonas costeras son las que más han sufrido la actividad humana. Una gran parte de la población mundial vive cerca de las costas. Por ejemplo, en Europa, alrededor del 30% de la población vive a menos de 50 km. de la costa; y en España, 12,5 millones de habitantes - número que aumenta considerablemente en verano-, viven en las ciudades situadas en los algo más de 8 000 km. de costa que tiene el país. Así se entiende que una gran parte de las orillas de los mares del mundo tengan graves problemas de contaminación.
Los vertidos son la principal fuente de contaminación de las costas. En la mayor parte de los países en vías de desarrollo y en muchos lugares de los desarrollados, los vertidos de las ciudades se suelen hacer directamente al mar, sin tratamientos previos de depuración.
Además, las zonas donde la renovación del agua es más lenta (marismas, estuarios, bahías, puertos) son las más maltratadas. En ellas es frecuente encontrar peces con tumores y graves enfermedades, o moluscos y crustáceos cuya pesca y consumo están prohibidos, porque contienen altas dosis de productos tóxicos.
Aguas libres
Los efectos de los vertidos también se dejan sentir en las aguas libres de mares y océanos. Las grandes cantidades de plástico echadas al mar son las responsables de la muerte de muchas focas, ballenas, delfines, tortugas, y aves marinas, que quedan atrapadas en ellas o se las comen.
En algunos casos el exceso de materia orgánica y de nutrientes que hacen proliferar las algas, genera procesos de putrefacción tan fuertes, que se consume el oxígeno disuelto en el mar y los peces y otros organismos mueren, originándose grandes "zonas sin vida"
Petróleo en el mar
En nuestras sociedades el petróleo y sus derivados son imprescindibles como fuente de energía y para la fabricación de múltiples productos de la industria química, farmacéutica, alimenticia, etc.
Por otro lado, alrededor del 0,1 al 0,2% de la producción mundial de petróleo acaba vertido al mar. El porcentaje puede parecer no muy grande pero son casi 3 millones de toneladas las que acaban contaminando las aguas cada año, provocando daños en el ecosistema marino.
La mayor parte del petróleo se usa en lugares muy alejados de sus puntos de extracción por lo que debe ser transportado por petroleros u oleoductos a lo largo de muchos kilómetros, lo que provoca espectaculares accidentes de vez en cuando. Estas fuentes de contaminación son las más conocidas y tienen importantes repercusiones ambientales, pero la mayor parte del petróleo vertido procede de tierra, de desperdicios domésticos, automóviles y gasolineras, refinerías, industrias, etc.
Se han ensayado distintas técnicas para limitar o limpiar los vertidos del petróleo. Pronto se comenzaron a usar detergentes y otros productos, pero en el accidente del Torrey Canyon se comprobó que los productos de limpieza utilizados habían causado más daño ecológico que el propio petróleo vertido. Actualmente se emplean productos de limpieza menos dañinos y diferentes técnicas y maquinarias, como barreras flotantes, sistemas de recogida, etc., que en algunos casos pueden ser bastante eficaces, aunque no son la solución definitiva. Evitar la contaminación es la única solución verdaderamente aceptable.
Cantidad y origen del petróleo vertido al mar
No es fácil calcular la cantidad y el origen de petróleo que llega al mar y, de hecho, sólo disponemos de valores poco exactos. Valores estimados según diversos estudios son:
Año | Toneladas vertidas |
1973 | 6.110.000 |
1979 | 4.670.000 |
1981 | 3.570.000 |
1983 | 3.200.000 |
1985/1989 | 2.400.000 |
Entre los estudios que se han hecho destacan los de la National Academy of Sciences de los EEUU. Publicó su primer informe en 1975 (datos correspondientes al año 1973) y posteriormente otro en 1985 (con algunas cifras completadas en 1989). Con datos extraídos de estos informes, y de otras fuentes, se puede resumir que la cifra global de petróleo que llega al mar cada año es de unos 3.000.000 toneladas métricas (rango posible entre 1.7 y 8.8 millones de toneladas), y la procedencia de este petróleo vertido al mar sería:
Por causas naturales | 10% |
Desde tierra | 64% (de ellas un 15 a un 30% por aire ) |
Por funcionamiento de petroleros | 7% |
Por accidentes | 5% |
Por explotaciones petroleo en mar | 2% |
Por otros buques | 12% |
Accidentes
El porcentaje vertido por accidentes es de alrededor de un 5% y, aunque en proporción no es la mayor fuente de contaminación, los desastres ambientales que originan son muy importantes, porque producen vertidos de masas de petróleo muy concentradas y forman manchas de gran extensión. En algunos accidentes se han llegado a derramar más de 400 000 toneladas, como en la rotura de una plataforma marina en el Golfo de México, en 1979. En la Guerra del Golfo, aunque no propiamente por accidente, sino por una combinación de acciones de guerra y sabotajes, se vertió aún mayor cantidad. Otros, como el vertido del Exon Valdez, en 1989, en Alaska, pueden llegar a costas o lugares de gran interés ecológico y causar extraordinarias mortandades en pájaros, focas y todo tipo de fauna y flora.
Vertidos de petróleo de más de 140 mil toneladas | |||
Año | Accidente | Lugar | Toneladas vertidas |
1991 | Guerra del Golfo | Golfo Pérsico | 816 000 |
1979 | Plataforma Ixtoc I | Mexico | 476 000 |
1983 | Pozo petrolífero | Iran | 272 000 |
1992 | Oleoducto | Uzbekistan | 272 000 |
1983 | Petrolero Castillo de Bellver | Sudáfrica | 267 000 |
1978 | Petrolero Amoco Cadiz | Francia | 234 000 |
1988 | Petrolero Odyssey | Canadá | 146 000 |
1979 | Petrolero Atlantic Empress | Caribe | 145 000 |
1980 | Pozo petrolífero | Libia | 143 000 |
1979 | Petrolero Atlantic Empress | Barbados | 141 000 |
Otros accidentes conocidos o que han sucedido en España | |||
1967 | Petrolero Torrey Canyon | Reino Unido | 130 000 |
1994 | Rotura de oleoducto | Rusia | 104 000 |
1976 | Petrolero Urquiola | La Coruña | 95 000 |
1992 | Petrolero Mar Egeo | La Coruña | 71 000 |
1989 | Petrolero Exxon Valdez | Alaska | 37 000 |
Explicación: En el Anuario Internacional de Estadísticas sobre Vertidos Petrolíferos de 1996 venían recogidos 62 casos en los que se han derramado más de 3 400 toneladas (10 millones de galones). En el cuadro se recogen los accidentes con vertidos mayores de 140 000 toneladas y algunos otros casos de especial interés por sus consecuencias o por haber tenido lugar en las costas españolas.
Lavado de tanques
Durante mucho tiempo el lavado de tanques de los petroleros ha sido una de las prácticas más dañinas y que más contaminación por petróleo ha producido. Estos grandes buques hacían el lavado en los viajes de regreso, llenando los tanques con agua del mar que después vertían de nuevo al océano, dejando grandes manchas de petróleo por todas las rutas marítimas que usaban. En los últimos años una legislación más exigente y un sistema de vigilancia y denuncias más eficiente, han conseguido reducir de forma significativa estas prácticas, aunque, por unos motivos o por otros, los petroleros todavía siguen siendo un importante foco de contaminación.
Evolución de las manchas de petróleo
El petróleo vertido se va extendiendo en una superficie cada vez mayor hasta llegar a formar una capa muy extensa, con espesores de sólo décimas de micrómetro. De esta forma se ha comprobado que 1 m3 de petróleo puede llegar a formar, en hora y media, una mancha de 100 m de diámetro y 0,1 mm de espesor.
Evolución de las manchas de petróleo
Una gran parte del petróleo (entre uno y dos tercios) se evapora. El petróleo evaporado es descompuesto por fotooxidación en la atmósfera.
Del crudo que queda en el agua:
-
parte sufre fotooxidación;
-
otra parte se disuelve en el agua, siendo esta la más peligrosa desde el punto de vista de la contaminación, y
-
lo que queda forma el "mousse": emulsión gelatinosa de agua y aceite que se convierte en bolas de alquitrán densas, semisólidas, con aspecto asfáltico. Se ha calculado que en el centro del Atlántico hay unas 86 000 toneladas de este material, principalmente en el mar de los Sargazos que tiene mucha capacidad de recoger este tipo de material porque las algas, muy abundantes en esa zona, quedan enganchadas al alquitrán.
Sistemas de limpieza de los vertidos de petróleo
1.Contención y recogida: Se rodea el petróleo vertido con barreras y se recupera con raseras o espumaderas que son sistemas que succionan y separan el petróleo del agua por:
Centrifugación, aprovechando que el agua es más pesada que el crudo se consigue que sea expulsada por el fondo del dispositivo que gira, mientras el petróleo es bombeado por la parte superior;
Bombeo por aspiración
Adherencia a tambor o discos giratorios, que se introducen en la mancha para que el crudo quede adherido a ellos, luego se desprende rascando y el petróleo que va quedando junto al eje de giro es bombeado a la embarcación de recogida
Fibras absorbentes, en el que se usan materiales plásticos oleofílicos (que adhieren el petróleo) que actúan como una bayeta o "mopa" que absorbe petróleo, luego se exprime en la embarcación de recogida y vuelve a ser empleada para absorber más
Estas técnicas no causan daños y son muy usadas, pero su eficiencia, aun en las mejores condiciones, sólo llega a un 10 - 15%.
2.Dispersantes: Son sustancias químicas similares a los detergentes, que rompen el petróleo en pequeñas gotitas (emulsión) con lo que se diluyen los efectos dañinos del vertido y se facilita la actuación de las bacterias que digieren los hidrocarburos. Es muy importante elegir bien la sustancia química que se usa como dispersante, porque con algunas de las que se utilizaron en los primeros accidentes, por ejemplo en el del Torrey Canyon, se descubrió que eran más tóxicas y causaban más daños que el propio petróleo. En la actualidad existen dispersantes de baja toxicidad autorizados.
3.Incineración: Quemar el petróleo derramado suele ser una forma eficaz de hacerlo desaparecer. En circunstancias óptimas se puede eliminar el 95% del vertido. El principal problema de este método es que produce grandes cantidades de humo negro que, aunque no contiene gases más tóxicos que los normales que se forman al quemar el petróleo en la industria o los automóviles, es muy espeso por su alto contenido de partículas.
4.Biodegradación: En la naturaleza existen microorganismos (bacterias y hongos, principalmente) que se alimentan de los hidrocarburos y los transforman en otras sustancias químicas no contaminantes. Este proceso natural se puede acelerar aportando nutrientes y oxígeno que facilitan la multiplicación de las bacterias.
5.Limpieza de las costas: En ocasiones se usan chorros de agua caliente a presión para arrastrar el petróleo desde la línea de costa al agua. Este método suele hacer más mal que bien porque entierra el hidrocarburo más profundamente en la arena y mata todo ser vivo de la playa. Se usó extensamente en el accidente del Exxon Valdez debido a que la opinión pública exigía la limpieza y este método deja aparentemente la playa con un aspecto casi normal. Pero luego se comprobó que las zonas que se habían dejado para que se limpiaran de forma natural, al cabo de unos meses estaban en mejores condiciones que las que se habían sometido al tratamiento, demostrando que consideraciones estéticas a corto plazo no deben imponerse a planteamientos ecológicos más importantes a largo plazo.
6.No hacer nada: En los vertidos en medio del océano, o en aquellos en que la limpieza es difícil y poco eficaz, lo mejor es dejar que la acción de las olas, la fotooxidación y otras acciones naturales, acaben solucionando el problema.
7. Efectos de la contaminación con petróleo
Los diversos ecosistemas reciben petróleo e hidrocarburos, en cantidades diversas, de forma natural, desde hace millones de años. Por esto es lógico que se encuentren muchos microorganismos capaces de metabolizar el petróleo y que sea frecuente el que muchos seres vivos sean capaces de eliminar el absorbido a través de la cadena alimenticia. No parece que es muy importante la amenaza de bioacumulación del petróleo y los productos relacionados en la cadena alimenticia, aunque en algunas ocasiones, en localidades concretas, puede resultar una amenaza para la salud, incluso humana.
Hay diferencias notables en el comportamiento de diferentes organismos ante la contaminación con petróleo. Los moluscos bivalvos (almejas, mejillones, etc.). por ejemplo, muestran muy baja capacidad de eliminación del contaminante y, aunque muchos organismos (algunos peces, por ejemplo) no sufren daños importantes con concentraciones del producto de hasta 1000 ppm, algunas larvas de peces se ven afectadas por niveles tan bajos como 1 ppm.
Las aves y los mamíferos se ven afectados por la impregnación de sus plumas y piel por el crudo, lo que supone su muerte en muchas ocasiones porque altera su capacidad de aislamiento o les impermeabiliza.
Los daños no sólo dependen de la cantidad vertida, sino también del lugar, momento del año, tipo de petróleo, etc. Un simple vertido de limpieza de tanques de un barco -el Stylis- mató en Noruega a 30 000 aves marinas en 1981, porque fue arrastrado directamente a la zona donde estas aves tenían sus colonias.
La mayoría de las poblaciones de organismos marinos se recuperan de exposiciones a grandes cantidades de petróleo crudo en unos tres años, aunque si el petróleo es refinado o la contaminación se ha producido en un mar frío, los efectos pueden durar el doble o el triple.
Alteraciones físicas del agua
Alteraciones físicas | Características y contaminación que indica |
Color | El agua no contaminada suele tener ligeros colores rojizos, pardos, amarillentos o verdosos debido, principalmente, a los compuestos húmicos, férricos o los pigmentos verdes de las algas que contienen.. Las aguas contaminadas pueden tener muy diversos colores pero, en general, no se pueden establecer relaciones claras entre el color y el tipo de contaminación |
Olor y sabor | Compuestos químicos presentes en el agua como los fenoles, diversos hidrocarburos, cloro, materias orgánicas en descomposición o esencias liberadas por diferentes algas u hongos pueden dar olores y sabores muy fuertes al agua, aunque estén en muy pequeñas concentraciones. Las sales o los minerales dan sabores salados o metálicos, en ocasiones sin ningún olor. |
Temperatura | El aumento de temperatura disminuye la solubilidad de gases (oxígeno) y aumenta, en general, la de las sales. Aumenta la velocidad de las reacciones del metabolismo, acelerando la putrefacción. La temperatura óptima del agua para beber está entre 10 y 14ºC. Las centrales nucleares, térmicas y otras industrias contribuyen a la contaminación térmica de las aguas, a veces de forma importante. |
Materiales en suspensión | Partículas como arcillas, limo y otras, aunque no lleguen a estar disueltas, son arrastradas por el agua de dos maneras: en suspensión estable (disoluciones coloidales); o en suspensión que sólo dura mientras el movimiento del agua las arrastra. Las suspendidas coloidalmente sólo precipitarán después de haber sufrido coagulación o floculación (reunión de varias partículas) |
Radiactividad | Las aguas naturales tienen unos valores de radiactividad, debidos sobre todo a isotopos del K. Algunas actividades humanas pueden contaminar el agua con isótopos radiactivos. |
Espumas | Los detergentes producen espumas y añaden fosfato al agua (eutrofización). Disminuyen mucho el poder autodepurador de los ríos al dificultar la actividad bacteriana. También interfieren en los procesos de floculación y sedimentación en las estaciones depuradoras. |
Conductividad | El agua pura tiene una conductividad eléctrica muy baja. El agua natural tiene iones en disolución y su conductividad es mayor y proporcional a la cantidad y características de esos electrolitos. Por esto se usan los valores de conductividad como índice aproximado de concentración de solutos. Como la temperatura modifica la conductividad las medidas se deben hacer a 20ºC |
Alteraciones químicas del agua
Alteraciones químicas | Contaminación que indica |
pH | Las aguas naturales pueden tener pH ácidos por el CO2 disuelto desde la atmósfera o proveniente de los seres vivos; por ácido sulfúrico procedente de algunos minerales, por ácidos húmicos disueltos del mantillo del suelo. La principal substancia básica en el agua natural es el carbonato cálcico que puede reaccionar con el CO2 formndo un sistema tampón carbonato/bicarbonato. Las aguas contaminadas con vertidos mineros o industriales pueden tener pH muy ácido. El pH tiene una gran influencia en los procesos químicos que tienen lugar en el agua, actuación de los floculantes, tratamientos de depuración, etc. |
Oxígeno disuelto OD | Las aguas superficiales limpias suelen estar saturadas de oxígeno, lo que es fundamental para la vida. Si el nivel de oxígeno disuelto es bajo indica contaminación con materia orgánica, septicización, mala calidad del agua e incapacidad para mantener determinadas formas de vida. |
Materia orgánica biodegradable: Demanda Bioquímica de Oxígeno (DBO5) | DBO5 es la cantidad de oxígeno disuelto requerido por los microorganismos para la oxidación aerobia de la materia orgánica biodegradable presente en el agua. Se mide a los cinco días. Su valor da idea de la calidad del agua desde el punto de vista de la materia orgánica presente y permite prever cuanto oxígeno será necesario para la depuración de esas aguas e ir comprobando cual está siendo la eficacia del tratamiento depurador en una planta. |
Materiales oxidables: Demanda Química de Oxígeno (DQO) | Es la cantidad de oxígeno que se necesita para oxidar los materiales contenidos en el agua con un oxidante químico (normalmente dicromato potásico en medio ácido). Se determina en tres horas y, en la mayoría de los casos, guarda una buena relación con la DBO por lo que es de gran utilidad al no necesitar los cinco días de la DBO. Sin embargo la DQO no diferencia entre materia biodegradable y el resto y no suministra información sobre la velocidad de degradación en condiciones naturales. |
Nitrógeno total | Varios compuestos de nitrógeno son nutrientes esenciales. Su presencia en las aguas en exceso es causa de eutrofización. El nitrógeno se presenta en muy diferentes formas químicas en las aguas naturales y contaminadas. En los análisis habituales se suele determinar el NTK (nitrógeno total Kendahl) que incluye el nitrógeno orgánico y el amoniacal. El contenido en nitratos y nitritos se da por separado. |
Fósforo total | El fósforo, como el nitrógenos, es nutriente esencial para la vida. Su exceso en el agua provoca eutrofización. El fósforo total incluye distintos compuestos como diversos ortofosfatos, polifosfatos y fósforo orgánico. La determinación se hace convirtiendo todos ellos en ortofosfatos que son los que se determinan por análisis químico. |
Aniones: cloruros nitratos nitritos fosfatos sulfuros cianuros fluoruros | indican salinidad indican contaminación agrícola indican actividad bacteriólogica indican detergentes y fertilizantes indican acción bacteriológica anaerobia (aguas negras, etc.) indican contaminación de origen industrial en algunos casos se añaden al agua para la prevención de las caries, aunque es una práctica muy discutida. |
Cationes: sodio calcio y magnesio amonio metales pesados |
están relacionados con la dureza del agua contaminación con fertilizantes y heces de efectos muy nocivos; se bioacumulan en la cadena trófica; (se estudian con detalle en el capítulo correspondiente) |
Compuestos orgánicos | Los aceites y grasas procedentes de restos de alimentos o de procesos industriales (automóviles, lubricantes, etc.) son difíciles de metabolizar por las bacterias y flotan formando películas en el agua que dañan a los seres vivos. Los fenoles pueden estar en el agua como resultado de contaminación industrial y cuando reaccionan con el cloro que se añade como desinfectante forman clorofenoles que son un serio problema porque dan al agua muy mal olor y sabor. La contaminación con pesticidas, petróleo y otros hidrocarburos se estudia con detalle en los capítulos correspondientes. |
Alteraciones biológicas del agua
Alteraciones biológicas del agua | Contaminación que indican |
Bacterias coliformes | Desechos fecales |
Virus | Desechos fecales y restos orgánicos |
Animales, plantas, microorganismos diversos | Eutrofización |
Cuadro de enfermedades por patógenos contaminantes de las aguas
Tipo de microorganismo | Enfermedad | Síntomas |
Bacterias | Cólera | Diarreas y vómitos intensos. Deshidratación. Frecuentemente es mortal si no se trata adecuadamente |
Bacterias | Tifus | Fiebres. Diarreas y vómitos. Inflamación del bazo y del intestino. |
Bacterias | Disentería | Diarrea. Raramente es mortal en adultos, pero produce la muerte de muchos niños en países poco desarrollados |
Bacterias | Gastroenteritis | Náuseas y vómitos. Dolor en el digestivo. Poco riesgo de muerte |
Virus | Hepatitis | Inflamación del hígado e ictericia. Puede causar daños permanentes en el hígado |
Virus | Poliomelitis | Dolores musculares intensos. Debilidad. Temblores. Parálisis. Puede ser mortal |
Protozoos | Disentería amebiana | Diarrea severa, escalofríos y fiebre. Puede ser grave si no se trata |
Gusanos | Esquistosomiasis | Anemia y fatiga continuas |
Conclusiones
Procede de tres fuentes principales: las aguas residuales de alcantarillado, muy ricas en materia orgánica; los desechos industriales; y diversos productos químicos empleados en agricultura, como los plaguicidas a base de arsénico o azufre.
Los problemas que ocasiona la contaminación preocupan seriamente en la mayoría de los países desarrollados. Es preciso reutilizar al máximo los desechos y reducir el consumo innecesario de aquellos productos que dejan residuos peligrosos, pues sólo así conseguiremos un ambiente que permita mantener nuestra calidad de vida.
Descargar
Enviado por: | El remitente no desea revelar su nombre |
Idioma: | castellano |
País: | México |