Biología, Botánica, Genética y Zoología


Cambio climático


Introducción

El cambio climático es el desafío más grande que debe enfrentar el mundo hoy día. Describe cambios en la variación del estado atmosférico durante escalas de tiempo que pueden ser de décadas a millones de años. Estos cambios son provocados por procesos internos del planeta, fuerzas externas o más recientemente actividades biológicas.

Existe un formidable reservorio de carbono en el suelo de nuestro planeta el cual podría estar jugando un papel en el cambio climático global.

La posibilidad de que el cambio climático está siendo reforzado por un aumento en las emisiones de CO2 a partir de los suelos debido a un aumento de temperatura está sujeta a un gran debate.

La fuente última de materia orgánica de los suelos (SOM) esta dada por la fijación de carbono por parte de las plantas, incluyendo hojas raíces y exudados de raíces. La actividad de las comunidades microbianas metaboliza parte de ese sustrato y lo transforma en otros compuestos orgánicos (humus). La estabilización y destino de los residuos de materia orgánica es afectada por la calidad del sustrato original (Melillo et. al. 1982) y por las condiciones físicas del suelo: minerales (Balesdent et. al.), disponibilidad de O2, pH (Bunnell et. al.), formación y destrucción de agregados de suelo (Tiessen and Stewart; Cambardella and Elliott).

El carbono del suelo se pierde principalmente por producción de CO2 durante la degradación de materia orgánica. La materia orgánica de los suelos juega un importante papel en el almacenamiento de nutrientes y agua necesario para las plantas. Cambios en SOM pueden afectar la hidrología y productividad de las plantas.

Objetivos

(1) Averiguar los agentes que causan el flujo de carbono desde y hacia el suelo.

(2) Examinar el ciclo del carbono en respuesta al cambio climático.

Condiciones terrestres

Las condiciones en suelos minerales son favorables a la descomposición teniendo concentraciones de carbono relativamente bajas. Por el contrario cuando reinan las condiciones anóxicas la descomposición ocurre más lentamente y se acumulan gruesas capas de materia orgánica. En los suelos congelados permanentemente el drenaje es también pobre y la materia orgánica es enterrada en las capas minerales profundas. Así en las zonas anaerobias y en el permafrost los suelos contienen niveles más altos de carbono que en los suelos minerales y en conjunto son un enorme reservorio de carbono (Bockheim y Tarnocai, 1998).

Factores que controlan la descomposición del carbono

La reserva de materia orgánica global está dada por un balance entre la entrada y la salida carbono en el ambiente. La entrada la suministran las plantas y raíces. Las salidas se dan por la liberación de CO2 desde la superficie del suelo. Dado que la producción de CO2 está dada por procesos dependientes de la temperatura y están sujetos a limitaciones de agua, los modelos relacionan la liberación de CO2 a partir del suelo con la temperatura y con las precipitaciones. En los procesos de descomposición la temperatura aumenta con la complejidad del sustrato. La reacción es también dependiente de la concentración de sustrato y de la afinidad de la enzima por el mismo. Los suelos contienen una gran variedad de compuestos carbonados, cada uno con sus propias características kinéticas. La controversia se genera al trasladar estos conocimientos al ambiente. Los suelos contienen una mezcla de compuestos orgánicos cada uno con sus propias propiedades kinéticas. No sólo las plantas producen un amplio rango de sustratos de carbono, también juegan su papel la degradación microbiana o la reacción de condensación abiótica que produce nuevas estructuras aromáticas u otras estructuras moleculares que pueden afectar el tipo y eficacia de las enzimas que los degradan. Las enzimas que actúan en la descomposición pueden ser física o químicamente excluidas de muchos sustratos carbonados presentes en el ambiente.

Existen numerosos factores que pueden alterar la temperatura de descomposición:

(1) Protección física. La materia orgánica puede alojarse en agregados de suelo donde los microorganismos y sus enzimas tienen un acceso limitado y la disponibilidad del O2 es baja (Oades, 1988; Six, 2002). El desprendimiento de los agregados puede ser enzimático (Sollins et. al. 1996) a medida que el “pegamento biogénico” es descompuesto. También otros procesos físicos como el impacto de las gotas de lluvia pueden destruir los agregados. Estos procesos no son directamente dependientes de la temperatura pero son afectados por el clima.

(2) Protección química. La materia orgánica puede ser adsorbida en las superficies minerales a través de interacciones electroestáticas siendo incapaz de degradarse. (Oades, 1988). Estos procesos pueden verse afectados por la temperatura.

(3) Sequía. Reduce el grosor de los suelos acuáticos inhibiendo la difusión de las enzimas extracelulares y el carbono orgánico soluble (McHale, 2005)

(4) Congelamiento. Aunque hay reacciones enzimáticas que ocurren a 0ºC, la difusión de los sustratos y enzimas extracelulares es muy lenta cuando el agua está congelada (Mikan, 2002).

Cada una de estas situaciones afecta la tasa de descomposición disminuyendo la concentración del sustrato.

Herramientas para estudiar SOM

No existe un único método que satisfaga todos los requisitos para separar el carbono del suelo en sus componentes. La dinámica del carbono en el suelo es deducida mediante estudios físicos, fraccionamiento químico de la materia orgánica estudios de descomposición en el laboratorio medidas de flujos de carbono desde y hacia el suelo, medidas de 14C en suelos a varios intervalos de tiempo, cambios en el 13C del SOM luego de un cambio de vegetación de plantas C3 a plantas C4 y medida de los cambios en la cantidad total de C en suelos de distinta edad y o después de una turbación.

El CO2 es producido por la respiración metabólica de las raíces de plantas o por descomposición de la materia orgánica (fig. 1). Medidas con carbono radioactivo del CO2 respirado pueden ayudar a distinguir las fuentes de respiración de manera experimental. Sin embargo estos experimentos pueden ser complicados debido a las diferencias estacionales en cuanto a cantidad y calidad del detritus. En el laboratorio se puede separar el suelo de las raíces permitiendo observar la evolución de la descomposición del CO2 (Kirschbaum, 1995). Sin embargo, la magnitud de las condiciones en el campo no es fácil de trasladar al laboratorio. Actualmente se están desarrollando experimentos que manipulan la temperatura del suelo para determinar la respuesta de los mismos (Melillo, 1995)

'Cambio climtico'

Figura 1. Modelo conceptual de la dinámica del SOM

El cambio climático y el ciclo del carbono

La cantidad de materia orgánica en los suelos se correlaciona positivamente con la humedad y negativamente con la precipitación (Jenny, 1980). Se observaron los cambios en la tasa de carbono en Sierra Nevada, Hawaii y Paragominas (Brasil) con respecto a la temperatura anual. A pesar de que estos suelos difieren en cuanto a vegetación, precipitaciones y composición, hay una fuerte relación entre el cambio de la tasa de carbono a través del tiempo y la temperatura. Esto sugiere que la temperatura es un factor importante que controla los cambios en las tasas del ciclo del carbono (Townsend et. al. 1995; Scimel et. al. 1994; Jenkinson et. al. 1991).

Cambios en la humedad

En ambientes áridos, la reserva del carbono orgánico en el suelo es pobre mientras que esta va en aumento a medida que la humedad es mayor (Jenny, 1980; Post et. al. 1982). En estudios de descomposición de campo e incubación se observan aumentos en las tasas de descomposición en suelos aeróbicos con humedad añadida. Sin embargo, la tasa de descomposición de materia orgánica decrece dramáticamente bajo condiciones de excesiva humedad. Las bajas concentraciones de carbono en suelos áridos pueden ser debido a una disminución de la entrada de carbono, rápido intercambio de carbono y diferencias en la calidad de las plantas.

Alteraciones del carbono en el suelo

El carbono que se encuentra en los suelos puede responder a cambios en la vegetación. Los suelos pueden perder una gran cantidad de carbono a causa de actividades agrícolas (Cambardella y Elliot, 1994). En regiones donde la tasa de descomposición es baja cambios en la frecuencia de los incendios vinculados a cambios climáticos o actividades antropogénicas es el último control del estado del carbono. Los pantanos almacenan materia orgánica que es climáticamente estable. Se descompone lentamente a causa de una insuficiencia de oxidantes. El calentamiento de estos pantanos resulta en una pérdida de la materia orgánica acumulada (Goreham, 1991; Billings, 1987)

Conclusiones

El clima, la vegetación, la composición del suelo y el tiempo afectan los procesos que controlan la acumulación y descomposición de la materia orgánica en los suelos. El estudio de la cuantificación de estos factores esta recién en sus comienzos.

Extrapolar las tasas de descomposición a un futuro con un planeta más caliente basándose sólo en estudios de sensibilidad a la temperatura resulta inadecuado. Primero es necesario entender cuánto puede cambiar la disponibilidad del sustrato y cómo un grupo de factores ambientales cambiantes puede determinar la temperatura sensible a la descomposición. En los pantanos, turbas y permafrost los factores de descomposición son más sensibles al cambio como resultado de un cambio climático. Se debe entonces dar prioridad a las investigaciones que esclarezcan de que manera los factores de descomposición en estos ambientes son sensibles al clima.

Bibliografía

Balesdent, J., Wagner, G. H., and Mariotti, A. 1988. Soil. Sci. Soc. Am. J. 52:118-124

Billings, W. D. 1987. Q. Sci. Rev. 6:165-177

Bockheim, J. G. and Tarnocai, C. 1998. Recognition of cyoturbation for classifying permafrost affected soils. Geoderma. 81:281-293

Bunnell, F. L., Tait, D. E. N., Flanagan, P. W. and Cleve, K. V. 1977. Soil. Biol. Chem. 9:33-40

Cambardella, C. A. and Elliott, E. T. 1994. Soil. Sci. Soc. Am. J. 58:123-130

Goreham, E. 1991. Ecol. Appl. 1:182-195

Harrison, K., Broecker, W. and Bonani, G. 1993. Global Biogeochem. Cycles. 7:69-80

Jenkinson, D. J., Adams, D. E. and Wild, A. 1991. Nature. 351:304-306

Jenny, H. 1941. Factors of soil formation. McGraw-Hill, New York

Jenny, H. 1980. The soil resource: origin and behavior (Springer, New York)

Kirschbaum, M. U. F. 1995. Soil. Biol. Biochem. 27:753-760

McHale, G. 2002. Water repellent soil and its relationship to granularity, surface roughness and hidrophobicity: a material science view. Eur. J. Soil. Sci. 56:445-452

Melillo, J. M., Amber, J.D. and Muratore, J. F. 1982. Ecology 63:621-626

Melillo, J. M. Kicklighter, D. W. McGuire, A. D. Peterjohn, W. T. and Newkirk, K. M. 1995. In global change and its effects on soil organic carbon stocks, ed. Sonntag, R. G. Z. A. C. (Wiley, New York), pp175-190

Mikan, C. J. 2002. Temperature controls of microbial respiration in artic tundra soils adove and below freezing. Soil. Biol. Biochem. 34:1785-1795

Oades, J. M. The retention of organic matter in soils. Biogeochemistry 5:35-70

Post, W. M., Emanuel, W. P. Zinke, P. J. and Stangenberger, A. G. 1982. Nature. 298:156-159

Tiessen, H. and Stewart, J. B. 1983. Sci. Soc. Am. J. 47: 509-514

Townsend, A. R. Vitousek, P. M. and Trumbore, S. E. 1995. Ecology. 11: 721-733

Schimel, D. S. Braswell, B. H., Holland, E., McKeown, R., Ojima, D. S., Painter, T. H., Parton, W. J. and Townsed, A. R. 1994. Global Biogeochem. Cycles. 8:279-294

Schelsinger, W.H. 1990. Nature. London. 348:232-234

Six, J. Measuring and understanding carbon storage in afforested soils by physical fractionation. 2002. Soil Sci. Soc. Am. J. 66:1981-1987.

4




Descargar
Enviado por:El remitente no desea revelar su nombre
Idioma: castellano
País: España

Te va a interesar