Suelos

Geología. Edafología. Suelo. Piedras. Nutrientes. Materia orgánica. Agua. Degradación y erosión

  • Enviado por: El remitente no desea revelar su nombre
  • Idioma: castellano
  • País: Chile Chile
  • 28 páginas
publicidad
cursos destacados
Cálculo Julioprofe
Cálculo Julioprofe
Tutoriales paso a paso de cálculo diferencial e integral producidos por el ingeniero colombiano Julio Alberto Ríos...
Ver más información

Transformada de Laplace
Transformada de Laplace
En este curso aprenderás todo lo relacionado con la transformada de Laplace. Los temas a grandes rasgos son: 1....
Ver más información

publicidad

American College villa alemana, 05 de diciembre 2002.

“Los suelos e experimento de las capas de los suelos y las piedras”

GUIA LABORATORIO.

1.-Describir cada uno de los tipos de suelos u piedras

2.-que diferencias existen entre los dos tipos de arena

3.- dibuja y mide 3 tipos de piedras redondas y tres piedras con cortes irregulares, que sean de diferentes tamaños

4.-que diferencias existen entre las tierras y las arenas mínimo 3

5.-porque existen piedras de diferentes colores explica

6.-como se forman las rocas y o piedras, explica

7.-en que capa se encuentra el petróleo

8.- porque existen piedras redondas y piedras con cortes irregulares, explica

9.-con el frasco que trajiste de tu casa coloca en orden las diferentes tipos de suelos, en el frasco indica cada uno de los tipos de suelo

0.-porque la tierra de jardín es de color oscuro en comparación con la de la calle, explique

DESARROLLO DEL TEMA.

LOS SUELOS.

Suelo, cubierta superficial de la mayoría de la superficie continental de la Tierra. Es un agregado de minerales no consolidados y de partículas orgánicas producidas por la acción combinada del viento, el agua y los procesos de desintegración orgánica.

Los suelos cambian mucho de un lugar a otro. La composición química y la estructura física del suelo en un lugar dado están determinadas por el tipo de material geológico del que se origina, por la cubierta vegetal, por la cantidad de tiempo en que ha actuado la meteorización, por la topografía y por los cambios artificiales resultantes de las actividades humanas. Las variaciones del suelo en la naturaleza son graduales, excepto las derivadas de desastres naturales. Sin embargo, el cultivo de la tierra priva al suelo de su cubierta vegetal y de mucha de su protección contra la erosión del agua y del viento, por lo que estos cambios pueden ser más rápidos. Los agricultores han tenido que desarrollar métodos para prevenir la alteración perjudicial del suelo debida al cultivo excesivo y para reconstruir suelos que ya han sido alterados con graves daños.

El conocimiento básico de la textura del suelo es importante para los ingenieros que construyen edificios, carreteras y otras estructuras sobre y bajo la superficie terrestre. Sin embargo, los agricultores se interesan en detalle por todas sus propiedades, porque el conocimiento de los componentes minerales y orgánicos, de la aireación y capacidad de retención del agua, así como de muchos otros aspectos de la estructura de los suelos, es necesario para la producción de buenas cosechas. Los requerimientos de suelo de las distintas plantas varían mucho, y no se puede generalizar sobre el terreno ideal para el crecimiento de todas las plantas. Muchas plantas, como la caña de azúcar, requieren suelos húmedos que estarían insuficientemente drenados para el trigo. Las características apropiadas para obtener con éxito determinadas cosechas no sólo son inherentes al propio suelo; algunas de ellas pueden ser creadas por un adecuado acondicionamiento del suelo.

Naturaleza del suelo

Los componentes primarios del suelo son: 1) compuestos inorgánicos, no disueltos, producidos por la meteorización y la descomposición de las rocas superficiales; 2) los nutrientes solubles utilizados por las plantas; 3) distintos tipos de materia orgánica, viva o muerta y 4) gases y agua requeridos por las plantas y por los organismos subterráneos.

La naturaleza física del suelo está determinada por la proporción de partículas de varios tamaños. Las partículas inorgánicas tienen tamaños que varían entre el de los trozos distinguibles de piedra y grava hasta los de menos de 1/40.000 centímetros. Las grandes partículas del suelo, como la arena y la grava, son en su mayor parte químicamente inactivas; pero las pequeñas partículas inorgánicas, componentes principales de las arcillas finas, sirven también como depósitos de los que las raíces de las plantas extraen nutrientes. El tamaño y la naturaleza de estas partículas inorgánicas diminutas determinan en gran medida la capacidad de un suelo para almacenar agua, vital para todos los procesos de crecimiento de las plantas.

La parte orgánica del suelo está formada por restos vegetales y restos animales, junto a cantidades variables de materia orgánica amorfa llamada humus. La fracción orgánica representa entre el 2 y el 5% del suelo superficial en las regiones húmedas, pero puede ser menos del 0.5% en suelos áridos o más del 95% en suelos de turba.

El componente líquido de los suelos, denominado por los científicos solución del suelo, es sobre todo agua con varias sustancias minerales en disolución, cantidades grandes de oxígeno y dióxido de carbono disueltos. La solución del suelo es muy compleja y tiene importancia primordial al ser el medio por el que los nutrientes son absorbidos por las raíces de las plantas. Cuando la solución del suelo carece de los elementos requeridos para el crecimiento de las plantas, el suelo es estéril.

Los principales gases contenidos en el suelo son el oxígeno, el nitrógeno y el dióxido de carbono. El primero de estos gases es importante para el metabolismo de las plantas porque su presencia es necesaria para el crecimiento de varias bacterias y de otros organismos responsables de la descomposición de la materia orgánica. La presencia de oxígeno también es vital para el crecimiento de las plantas ya que su absorción por las raíces es necesaria para sus procesos metabólicos.

Clases de suelo

Los suelos muestran gran variedad de aspectos, fertilidad y características químicas en función de los materiales minerales y orgánicos que lo forman. El color es uno de los criterios más simples para calificar las variedades de suelo. La regla general, aunque con excepciones, es que los suelos oscuros son más fértiles que los claros. La oscuridad suele ser resultado de la presencia de grandes cantidades de humus. A veces, sin embargo, los suelos oscuros o negros deben su tono a la materia mineral o a humedad excesiva; en estos casos, el color oscuro no es un indicador de fertilidad. Los suelos rojos o castaño-rojizos suelen contener una gran proporción de óxidos de hierro (derivado de las rocas primigenias) que no han sido sometidos a humedad excesiva. Por tanto, el color rojo es, en general, un indicio de que el suelo está bien drenado, no es húmedo en exceso y es fértil. En muchos lugares del mundo, un color rojizo puede ser debido a minerales formados en épocas recientes, no disponibles químicamente para las plantas. Casi todos los suelos amarillos o amarillentos tienen escasa fertilidad. Deben su color a óxidos de hierro que han reaccionado con agua y son de este modo señal de un terreno mal drenado. Los suelos grisáceos pueden tener deficiencias de hierro u oxígeno, o un exceso de sales alcalinas, como carbonato de calcio. La textura general de un suelo depende de las proporciones de partículas de distintos tamaños que lo constituyen. Las partículas del suelo se clasifican como arena, limo y arcilla. Las partículas de arena tienen diámetros entre 2 y 0,05 mm, las de limo entre 0,05 y 0,002 mm, y las de arcilla son menores de 0,002 mm. En general, las partículas de arena pueden verse con facilidad y son rugosas al tacto. Las partículas de limo apenas se ven sin la ayuda de un microscopio y parecen harina cuando se tocan. Las partículas de arcilla son invisibles si no se utilizan instrumentos y forman una masa viscosa cuando se mojan. En función de las proporciones de arena, limo y arcilla, la textura de los suelos se clasifica en varios grupos definidos de manera arbitraria. Algunos son: la arcilla arenosa, la arcilla limosa, el limo arcilloso, el limo arcilloso arenoso, el fango arcilloso, el fango, el limo arenoso y la arena limosa. La textura de un suelo afecta en gran medida a su productividad. Los suelos con un porcentaje elevado de arena suelen ser incapaces de almacenar agua suficiente como para permitir el buen crecimiento de las plantas y pierden grandes cantidades de minerales nutrientes por lixiviación hacia el subsuelo. Los suelos que contienen una proporción mayor de partículas pequeñas, por ejemplo las arcillas y los limos, son depósitos excelentes de agua y encierran minerales que pueden ser utilizados con facilidad. Sin embargo, los suelos muy arcillosos tienden a contener un exceso de agua y tienen una textura viscosa que los hace resistentes al cultivo y que impide, con frecuencia, una aireación suficiente para el crecimiento normal de las plantas.

Clasificación de los suelos

Los suelos se dividen en clases según sus características generales. La clasificación se suele basar en la morfología y la composición del suelo, con énfasis en las propiedades que se pueden ver, sentir o medir —por ejemplo, la profundidad, el color, la textura, la estructura y la composición química—. La mayoría de los suelos tienen capas características, llamadas horizontes; la naturaleza, el número, el grosor y la disposición de éstas también es importante en la identificación y clasificación de los suelos.

Las propiedades de un suelo reflejan la interacción de varios procesos de formación que suceden de forma simultánea tras la acumulación del material primigenio. Algunas sustancias se añaden al terreno y otras desaparecen. La transferencia de materia entre horizontes es muy corriente. Algunos materiales se transforman. Todos estos procesos se producen a velocidades diversas y en direcciones diferentes, por lo que aparecen suelos con distintos tipos de horizontes o con varios aspectos dentro de un mismo tipo de horizonte.

Los suelos que comparten muchas características comunes se agrupan en series y éstas en familias. Del mismo modo, las familias se combinan en grupos, y éstos en subórdenes que se agrupan a su vez en órdenes.

Los nombres dados a los órdenes, subórdenes, grupos principales y subgrupos se basan, sobre todo, en raíces griegas y latinas. Cada nombre se elige tratando de indicar las relaciones entre una clase y las otras categorías y de hacer visibles algunas de las características de los suelos de cada grupo. Los suelos de muchos lugares del mundo se están clasificando según sus características lo cual permite elaborar mapas con su distribución.

Química del suelo

El suelo tiene un gran número de reacciones que implican a casi todos los elementos químicos conocidos. Algunas reacciones se pueden considerar sencillas y se comprenden con facilidad, pero el resto son complejas y de difícil comprensión. En general los suelos se componen de silicatos con complejidades que varían desde la del sencillo óxido de silicio cuarzo hasta la de los silicatos de aluminios hidratados, muy complejos, encontrados en los suelos de arcilla. Los elementos del suelo más importantes para la nutrición de las plantas incluyen el fósforo, el azufre, el nitrógeno, el calcio, el hierro y el magnesio. Investigaciones recientes han mostrado que las plantas para crecer también necesitan cantidades pequeñas pero fundamentales de elementos como boro, cobre, manganeso y cinc. Las plantas obtienen nutrientes de los coloides del suelo, partículas diminutas parecidas a la arcilla que se mezclan con el agua, aunque no se disuelven en ella. Se forman como producto de la meteorización física y química de minerales primarios. Consisten en cantidades variables de óxidos hidratados de hierro, aluminio y silicio y de minerales cristalinos secundarios como la caolinita y la montmorillonita. Los coloides tienen algunas propiedades físicas marcadas que afectan fuertemente las características agrícolas de los distintos suelos. Los suelos de las regiones con precipitación escasa y poca agua subterránea están sometidos a lixiviación moderada y, por tanto, contienen gran cantidad de compuestos originales, como calcio, potasio y sodio. Los coloides de este tipo se expanden en gran medida cuando se mojan y tienden a dispersarse en el agua. Al secarse toman una consistencia gelatinosa y pueden, tras un secado adicional, formar masas impermeables al agua. Donde el terreno queda cubierto por bosques, los coloides inorgánicos y orgánicos penetran en la tierra transportados por agua subterránea después de lluvias o inundaciones; forman una capa concentrada en la parte inferior del suelo y consolidan otras partículas de él para producir una masa densa y sólida. Una de las características importantes de las partículas coloidales es su capacidad para participar en un tipo de reacción química conocida como intercambio de bases. En esta reacción un compuesto cambia al sustituir uno de sus elementos por otro. Así, los elementos que estaban ligados a un compuesto pueden quedar libres en la solución del suelo y estar disponibles como nutrientes para las plantas. Cuando se añade a un suelo materia fertilizante como el potasio, una porción del elemento requerido entra en la solución del suelo de forma inmediata, y queda disponible, mientras que el resto participa en el intercambio de bases y permanece en el suelo incorporado a los coloides. Uno de los ejemplos de intercambio de bases más simple y valioso para la agricultura es la reacción que se produce cuando la caliza (CaCO3) se utiliza para neutralizar la acidez. La acidez del suelo, que puede definirse como la concentración de iones de hidrógeno, afecta a muchas plantas; las legumbres, por ejemplo, no pueden crecer en un terreno ácido.

Agua del suelo

Como se dijo, la cantidad de agua disponible en un suelo dado tiene un efecto importante en la productividad del terreno para su uso agrícola. Tanto en estado líquido como gaseoso, el agua ocupa cerca de un cuarto del volumen del suelo productivo. La cantidad de agua retenida depende del tamaño y de la disposición de los poros en el terreno. En suelos gruesos y desagregados, el agua tiende a drenarse hacia abajo por la acción de la gravedad, dejando un pequeño remanente. Los suelos compuestos por partículas finas suelen tener una porosidad total superior, por tanto, retienen cantidades de agua mayores que los suelos de textura gruesa. El agua se mueve y queda retenida por un sistema de poros. Sólo están disponibles para las plantas dos tercios del agua almacenada después de que se haya drenado el exceso. Las partículas del suelo absorben el agua restante con fuerza suficiente como para impedir su uso por las plantas. Las fuerzas que actúan sobre el agua, llamadas succión del suelo, pueden clasificarse así: las causadas por las partículas (fuerzas mátricas), por los solutos disueltos en el agua (fuerzas osmóticas) y por la gravedad (fuerzas gravitatorias). Las fuerzas mátricas surgen de la acción capilar y de las interacciones electrostáticas entre el agua y las partículas del suelo. Las fuerzas osmóticas dependen de la cantidad de sales disueltas en el agua y que influyen de forma indirecta en su movimiento por el suelo. La suma de las fuerzas mátricas y osmóticas se llama potencial total del agua. El agua que interactúa con las superficies de los minerales del suelo tiene propiedades distintas de las del agua libre. Por tanto se llama agua ligada. Ésta, comparada con el agua libre, tiene volumen específico, viscosidad y calor específico mayor, constante dieléctrica menor y una mayor resistencia a los reordenamientos. Estos efectos se extienden a distancias muy cortas, del orden de tres a diez capas de moléculas de agua. El enlace de hidrógeno y las fuerzas de Van der Waals (atracción intermolecular) se mencionan como razones por las que el agua queda ligada a las superficies de suelo. Las necesidades de agua de las plantas se satisfacen con el agua del suelo. El límite máximo de embalse depende de la capacidad del terreno, y el mínimo depende del porcentaje de secado permanente y también de la ocupación efectiva de las raíces de la cosecha. La capacidad del terreno es la cantidad de agua en un suelo dos o tres días después de una inundación completa de su perfil, expresada como peso seco del suelo. El coeficiente de marchitamiento se define como el valor de la humedad del suelo bajo el cual un vegetal se marchitaría y moriría, aún cuando se encuentre en una atmósfera húmeda. Se expresa como porcentaje de masa de suelo seco.

Materia orgánica del suelo

El término general utilizado para definir la mezcla compleja de materia orgánica del suelo es humus. No es una mezcla estable de sustancias químicas, es más bien una mezcla dinámica, en constante cambio, que representa cada etapa de la descomposición de la materia orgánica muerta, desde la más simple a la más compleja. El proceso de descomposición está causado por la acción de un gran número de bacterias y hongos microscópicos. Estos microorganismos atacan y digieren los compuestos orgánicos complejos que constituyen la materia viva, reduciéndola a formas más simples que las plantas pueden usar como alimento. Un ejemplo típico de acción de las bacterias es la formación de amoníaco a partir de proteínas animales y vegetales.

Unas bacterias oxidan el amoniaco para formar nitritos, y otras actúan sobre los nitritos para constituir nitratos, un tipo de compuesto del nitrógeno que puede ser utilizado por las plantas. Algunas bacterias son capaces de atraer, o extraer, nitrógeno del aire (véase Fijación del nitrógeno) de forma que quede disponible en el suelo. Incluso partes no descompuestas del humus, o que sólo han experimentado descomposición parcial, contribuyen a la fertilidad del terreno dando al suelo una textura más ligera y porosa.

Bajo condiciones naturales, así como en zonas que no han sido nunca perturbadas por cultivo o deforestación, hay un equilibrio entre la cantidad de humus destruido por descomposición total y la materia añadida por la putrefacción de plantas y de cuerpos animales. Donde se practica la agricultura o donde se altera el equilibrio de los procesos naturales, bien por los humanos, bien por accidentes naturales como el fuego, se pierde la estabilidad y se reduce el contenido orgánico del suelo hasta que se alcanza un nuevo equilibrio.

TIPO

HORIZONTES, RASGOS CARACTERÍSTICOS

FERTILIDAD

DISTRIBUCIÓN

Entisol

Ninguno o rudimentario; se forma en tierras de aluvión húmedas.

Buena

Valles fluviales, como por ejemplo el Nilo, el Yangzi Jiang, el Huang He (Amarillo)

Vertisol

Ninguno; alto contenido de arcilla hinchable

Buena

Pastizales de regiones estacionalmente secas, como por ejemplo India, Sudán, Texas

Inceptisol

Incipiente; se forma en superficies de tierras jóvenes

Variable

En todo el mundo, aunque más común en regiones montañosas

Aridisol

Diferenciado, especialmente el horizonte de arcilla

Buena con riego

En regiones desérticas de todo el mundo

Molisol

Diferenciado, con horizonte de gruesa superficie orgánica oscura

Excelente, especialmente para cereales

Grandes praderas, pampas argentinas, estepas rusas

Espodosol

Diferenciado, con concentraciones de materias orgánicas, aluminio y hierro

Buena, especialmente para trigo

Bosques septentrionales de Europa y Norteamérica

Alfisol

Diferenciado, especialmente el horizonte de arcilla

Deficiente, requiere fertilizantes

Regiones húmedas y templadas de Norteamérica y Europa

Ultisol

Diferenciado, altamente lixiviado con horizonte de arcilla ácida.

Deficiente, requiere fertilizantes orgánicos

Subtrópicos húmedos, como por ejemplo: el sureste de EEUU, India, regiones medias de Perú y Brasil

Oxisol

No diferenciado, con brillantes rojos y amarillos debido a los minerales ferrosos

Deficiente, requiere fertilizantes

Trópicos húmedos, en especial las cuencas del Amazonas y del Congo

Histosol

No diferenciado, drenaje deficiente, el más alto contenido de carbono orgánico que todos los demás suelos

Variable

Regiones húmedas, tanto frías (turberas) como cálidas (pantanos) de todo el mundo

TAXONOMIA DE 10 TIPOS DE SUELOS

LOS PROCESOS DE DESGRADACION DEL SUELO.

Entre los más importantes procesos de degradación del suelo se encuentran: desertificación, erosión, contaminación y salinizacion.

Si bien es cierto que estos procesos pueden ser de origen natural, sin duda el hombre ha magnificado la situación por el uso irracional del suelo.

Esto ha ocurrido por intensificación de la agricultura, abandono de tierras, deforestación, incendios forestales, sobrepastoreo y expansión urbana e industrial.

1.- Desertificación: significa “la degradación de las tierras de las zonas ardidas, semiáridas y subhúmedas secas como resultado de diversos factores, tales como las variaciones climáticas y las actividades humanas”. En consecuencia, las áreas afectadas por el proceso de desertificación se caracterizan por la perdida progresiva de la calidad y potencial biológico, legando a condiciones extremas para el desarrollo de la vida.

2.- Erosión del sueldo: este proceso conlleva a la pérdida de material edáfico por la acción del agua de lluvia (erosión hídrica) y/o del viento (erosión eolica).

La erosión del suelo en si es un proceso natural que permite el rejuvenecimiento del relieve y la formación de nuevos paisajes. Sin embargo, la intervención humana hace que el proceso s intensifique como consecuencia de practicas inadecuadas en el mismo

3.-contaminación del suelo: este proceso implica la incorporación al suelo de sustancias extrañas, sean toxicas o no toxicas, las que pueden alterar la calidad del mismo e interferir en sus funciones y propiedades físicas, químicas y biológicas. Importante efecto tienen la utilización excesiva de productos agroquímicos, las emisiones gaseosas, los efluentes líquidos procedentes de procesos industriales y de esas fosas sépticas.

4.-salinizacion del suelo: si bien es cierto que las sales constituyen la base de la fertilidad del suelo, cuando las concentración de las mismas supera un determinado umbral surgen problemas a nivel del crecimiento de especies vegetales o cultivos. Este proceso se genera por uso inapropiado del agua de riego o por la mala calidad de la misma.

LAS PIEDRAS.

Mineral inorgánico o concreción de suelo, de origen sedimentario ígneo o metamórfico, usado de forma habitual en construcción, ingeniería civil, industria y arte. Algunas de las piedras de construcción son el basalto, el pedernal, el granito, la caliza, el mármol, el pórfido, la arenisca, la pizarra y la laja. Entre las piedras ornamentales, a excepción de las piedras preciosas y las gemas, están el alabastro, la fluorita, el jade, el jaspe, el lapislázuli, la labradorita y la malaquita. El ónice u ónix mexicano (aragonito estalagmítico) y el argelino, de color menos elegante, son incorporaciones recientes al grupo de las piedras ornamentales. En los últimos años casi el 83% de la piedra usada en monumentos ha sido granito, y un 17% mármol.

La cantería de piedra en algunos países implica una gran proporción de terreno afectado por minería de superficie. En algunos países sólo es superada por la extracción de carbón, arena y grava.

MARCO TEORICO.

Rocas sedimentarias, en geología, rocas compuestas por materiales transformados, formadas por la acumulación y consolidación de materia mineral pulverizada, depositada por la acción del agua y, en menor medida, del viento o del hielo glaciar. La mayoría de las rocas sedimentarias se caracterizan por presentar lechos paralelos o discordantes que reflejan cambios en la velocidad de sedimentación o en la naturaleza de la materia depositada.

Las rocas sedimentarias se clasifican según su origen en mecánicas o químicas. Las rocas mecánicas, o fragmentarias, se componen de partículas minerales producidas por la desintegración mecánica de otras rocas y transportadas, sin deterioro químico, gracias al agua. Son acarreadas hasta masas mayores de agua, donde se depositan en capas. El esquisto micáceo, la arenisca y el conglomerado son rocas sedimentarias comunes de origen mecánico.

Los materiales que forman rocas sedimentarias químicas pueden ser restos de organismos marinos microscópicos precipitados sobre el suelo del océano, como es el caso de la caliza. También pueden haber sido disueltos en agua fluente a partir de la roca primigenia y haberse depositado en el mar o en un lago por precipitación de la disolución. La halita, el yeso y la anhidrita se forman por evaporación de disoluciones salinas y la consiguiente precipitación de las sales.

Arenisca, roca sedimentaria con granulado grueso formado por masas consolidadas de arena. Su composición química es la misma que la de la arena; así, la roca está compuesta en esencia de cuarzo. El material cimentador que mantiene unidos los granos de arena suele estar compuesto por sílice, carbonato de calcio u óxido de hierro. El color de la roca viene determinado por el material cimentador: los óxidos de hierro generan arenisca roja o pardo rojiza, mientras que los otros producen arenisca blanca, amarillenta o grisácea. Cuando la arenisca se rompe, los granos de arena permanecen enteros, con lo que las superficies cobran un aspecto granular. Areniscas con distintas edades geológicas y con importancia comercial están distribuidas por todo el mundo. Aparte de servir como depósito natural de petróleo y gas, se usan en la construcción y en la fabricación de piedras de afilar y de moler.

Rocas metamórficas, rocas cuya composición y textura originales han sido alteradas por el calor y la presión existentes en las profundidades de la corteza terrestre. El metamorfismo que se produce como resultado tanto de la presión como de la temperatura recibe el nombre de dinamotérmico o regional; el metamorfismo producido por el calor o la intrusión de rocas ígneas recibe el nombre de térmico o de contacto.

Hay cuatro variedades comunes de rocas metamórficas que pueden provenir de rocas sedimentarias o de rocas ígneas, según el grado de metamorfismo que presenten, dependiendo de la cantidad de calor y presión a la que se han visto sometidas. Así, el esquisto se metamorfiza en pizarra a baja temperatura, pero si es calentado a temperaturas lo suficientemente elevadas como para que se recristalicen sus minerales arcillosos formando laminillas de mica, se metamorfiza en una filita.

A temperatura y presión aún más elevadas, se produce una recristalización completa, que da lugar a esquistos o gneis, rocas en las que el alineamiento de las laminillas de mica produce una textura laminar llamada foliación. En los esquistos, los minerales de color claro (cuarzo y feldespato sobre todo) están distribuidos homogéneamente entre las micas de color oscuro; el gneis, por el contrario, exhibe bandas de color características. Entre otros minerales formados por recristalización metamórfica, los silicatos de aluminio como la andalucita, la sillimanita y la cianita son lo bastante característicos como para ser considerados diagnósticos.

Entre las rocas metamórficas no foliadas, las más comunes son la cuarcita y el mármol. La cuarcita es una roca dura, de color claro en la que todos los granos de arena de una arenisca se han recristalizado formando una trama de cristales de cuarzo imbricados entre sí. El mármol es una roca más blanda y frágil de colores variados en la que se ha recristalizado por completo la dolomita o la calcita de la roca sedimentaria madre.

Pórfido (del griego porphyros, 'púrpura'), término aplicado originalmente a una roca egipcia compuesta por cristales prominentes de feldespato incrustados en una matriz roja o púrpura, pero hoy se aplica a cualquier roca ígnea que tenga cristales bien definidos incrustados en una masa relativamente fina de materia granulada. Esta matriz de grano fino se llama pasta y los cristales grandes son los fenocristales. Rocas ígneas con cualquier composición pueden tener variedades porfídicas. La sustancia llamada cobre pórfido consiste en minerales de cobre distribuidos en un cuerpo de pórfido.

Basalto, es la variedad más común de roca volcánica. Se compone casi en su totalidad de silicatos oscuros de grano fino, sobre todo feldespato, piroxeno y plagioclasas, y magnetita. Es el equivalente extrusivo del gabro, se forma por la efusión de lava a lo largo de las cordilleras oceánicas, donde el fondo marino, extendiéndose, añade corteza nueva para contrarrestar las pérdidas por subducción. Suele ser de color gris oscuro, y tiene muchas veces una textura vesicular que conserva los vestigios de burbujas producidas por vapor de agua en expansión, generado durante el enfriamiento y la solidificación de la lava. También son características las masas con forma almohadillada, causadas por el enfriamiento rápido de lava emitida tras una erupción en el fondo marino. Además de en torrentes de lava, el basalto se encuentra en diques y sills (diques concordantes). La disyunción prismática, como la mostrada en la Calzada de los Gigantes en Irlanda, es un rasgo común de estos cuerpos intrusivos poco profundos. Skye y otras de las islas Hébridas de Escocia están compuestas por mesetas basálticas

Pedernal, variedad común criptocristalina masiva de cuarzo, de color mate y en general oscuro, encontrado con frecuencia como nódulos en depósitos de marga. El pedernal de mayor calidad proviene de los yacimientos de marga de Gran Bretaña y del norte de Francia; son peores los de las piedras calizas del periodo cretácico.

La presencia de espículas de esponjas y de restos de diatomeas sugiere que estos esqueletos, en general silíceos, servían de núcleo para la deposición del sílice. En las superficies recién fracturadas, el pedernal tiene un lustre de cera.

El pedernal se quiebra con una fractura concoidea visible, su superficie queda curvada y marcada por anillos concéntricos produciendo ejes agudos. Los pueblos prehistóricos utilizaban fragmentos en armas afiladas y en instrumentos cortantes como cabezas de hachas, flechas y cuchillos. Cuando se golpea contra el acero, se producen chispas con facilidad; se usaba, por tanto, para encender mechas y para hacer explotar la pólvora en las armas de chispa.

En la actualidad, el pedernal se utiliza sobre todo en alfarería fina. La piedra usada en los encendedores es una aleación de tierras raras con hierro (metal miscible) y no tiene ninguna relación con el cuarzo pedernal.

Granito, roca ígnea con formación y textura cristalina visible. Se compone de feldespato (en general feldespato de potasio y oligoclasa), cuarzo, con una cantidad pequeña de mica (biotita o moscovita) y de algunos otros minerales accesorios como circón, apatito, magnetita, ilmenita y esfena.

El granito suele ser blanquecino o gris y con motas debidas a cristales más oscuros. El feldespato de potasio da a la roca un tono rojo o de color carne. El granito cristaliza a partir de magma enfriado de forma muy lenta a profundidades grandes bajo la superficie terrestre. Velocidades de enfriamiento muy lentas dan lugar a una variedad de grano grueso llamada pegmatita. El granito, junto a otras rocas cristalinas, constituye la base de las masas continentales y es la roca intrusiva más común entre las expuestas en la superficie terrestre.

La densidad del granito varía entre 2,63 y 2,75 g/cm3. Su resistencia a la presión se sitúa entre 1.000 y 1.400 kg por cm2. Es más duro que la arenisca, la caliza y el mármol, y su extracción es, por tanto, más difícil. Es una piedra importante en la construcción; las mejores clases son muy resistentes a la acción de los agentes atmosféricos.

El granito se encuentra particularmente extendido en los antiguos escudos precámbricos, formados hace más de 4.000 millones de años, de Rusia, África, Canadá, Sudamérica y Escocia.

Caliza, tipo común de roca sedimentaria, compuesta por calcita (carbonato de calcio, CaCO3). Cuando se calcina (se lleva a alta temperatura) da lugar a cal (óxido de calcio, CaO). La caliza cristalina metamórfica se conoce como mármol. Muchas variedades de caliza se han formado por la unión de caparazones o conchas de mar, formadas por las secreciones de CaCO3 de distintos animales marinos. La creta es una variedad porosa y con grano fino compuesta en su mayor parte por caparazones de foraminíferos; la lumaquela es una caliza blanda formada por fragmentos de concha de mar. Una variedad, conocida como caliza oolítica, está compuesta por pequeñas concreciones ovoides, cada una de ellas contiene en su núcleo un grano de arena u otra partícula extraña alrededor de la cual se ha producido una deposición. Ciertos tipos de caliza se usan en la construcción, como la piedra de cantería.

Mármol, variedad cristalina y compacta de caliza metamórfica, que puede pulirse hasta obtener un gran brillo y se emplea sobre todo en la construcción y como material escultórico. Comercialmente, el término se amplía para incluir cualquier roca compuesta de carbonato de calcio que pueda pulirse, e incluye algunas calizas comunes; también incluye, en términos genéricos, piedras como el alabastro, la serpentina y, en ocasiones, el granito.

La superficie del mármol se deshace con facilidad si se expone a una atmósfera húmeda y ácida, pero es duradero en ambientes secos si se le protege de la lluvia. El mármol más puro es el mármol estatuario, que es blanco con una estructura cristalina visible. El brillo característico de este tipo de mármol se debe al efecto que produce la luz al penetrar levemente en la piedra antes de ser reflejada por las superficies de los cristales internos. La variedad más famosa de este mármol procede de las canteras del monte Pentelikon, en Ática, que fue el utilizado por los grandes escultores de la antigua Grecia, incluidos Fidias y Praxíteles. La colección Elgin está compuesta de mármol de Pentelikon. El mármol de Paros, utilizado también por los escultores y arquitectos de la Grecia antigua, era extraído fundamentalmente de las canteras del monte Parpessa, en la isla griega de Paros. El mármol de Carrara, que abunda en los Alpes italianos y se extrae en la región de Carrara, Massa y Serravezza, fue utilizado en Roma con fines arquitectónicos en tiempos de Augusto, el primer emperador, aunque las variedades más finas de mármol escultórico fueron descubiertas más adelante. Los mejores trabajos de Miguel Ángel son de este tipo de mármol; es muy utilizado por los escultores contemporáneos.

Otros mármoles contienen una cantidad variable de impurezas, que dan lugar a los modelos jaspeados que tan apreciados son en muchos de ellos. Se usan para la construcción, sobre todo en interiores, y también en pequeños trabajos ornamentales, como pies de lámpara, mesas, escribanías y otras novedades. Las variedades escultóricas y arquitectónicas están distribuidas por todo el mundo en forma de grandes depósitos.

Pizarra, roca fósil y densa con grano fino, formada por el metamorfismo de esquisto micáceo, arcilla o, con menor frecuencia, de rocas ígneas.

El proceso de metamorfismo produce la consolidación de la roca original y la formación de nuevos planos de exfoliación en los que la pizarra se divide en láminas características, finas y extensas. Muchas rocas que muestran esta exfoliación se llaman también, por extensión, pizarras. La pizarra auténtica es dura y compacta y no sufre meteorización apreciable.

Los minerales básicos contenidos en la pizarra son el cuarzo y la moscovita, un tipo de mica; la biotita, la clorita y la hematites están presentes muchas veces como minerales accesorios; y el apatito, el grafito, el caolín, la magnetita, la turmalina y el circonio pueden aparecer como minerales accesorios secundarios. La pizarra suele ser de color negro azulado o negro grisáceo, pero se conocen variedades rojas, verdes, moradas y variegadas. Hay canteras en Gales, Francia, Alemania y Estados Unidos. Se extrae en explotaciones a cielo abierto y sólo en algunas minas subterráneas. La piedra se divide mejor cuando acaba de ser extraída de la cantera. La pizarra se emplea en la construcción de tejados, como piedra de pavimentación y como "pizarras" o "pizarrones" tradicionales para escuela.

Arena, masa desagregada e incoherente de materias minerales en estado granular fino, que consta normalmente de cuarzo (sílice) con una pequeña proporción de mica, feldespato, magnetita y otros minerales resistentes. Es el producto de la desintegración química y mecánica de la rocas bajo meteorización y abrasión (véase Erosión). Cuando las partículas acaban de formarse suelen ser angulosas y puntiagudas, haciéndose más pequeñas y redondeadas por la fricción provocada por el viento y el agua.

La arena es un constituyente importante de muchos suelos y es muy abundante como depósito superficial a lo largo de los cursos de muchos ríos, en las orillas de lagos, en las costas y en las regiones áridas. Véase Suelo; Acondicionamiento del suelo. Un tipo particular de arena es el ingrediente principal en la fabricación de vidrio. Otras clases se utilizan en fundición para hacer moldes o para fabricar cerámicas, yesos y cementos. La arena se usa como abrasivo moledor y pulidor bajo la forma de papel de lija, hoja de papel con una de sus caras cubierta de arena o de una sustancia abrasiva similar. La utilización de chorros de arena, impulsados por aire o vapor a presión, es una técnica importante en la limpieza de la piedra o en el pulido de superficies metálicas rugosas.

Arcilla, suelo o roca sedimentaria, plástica y tenaz cuando se humedece. Se endurece permanentemente cuando se cuece o calcina. De gran importancia en la industria, la arcilla se compone de un grupo de minerales aluminosilicatos formados por la meteorización de rocas feldespáticas, como el granito. El grano es de tamaño microscópico y con forma de escamas. Esto hace que la superficie de agregación sea mucho mayor que su espesor, lo que permite un gran almacenamiento de agua por adherencia, dando plasticidad a la arcilla y provocando la hinchazón de algunas variedades. La arcilla común es una mezcla de caolín, o arcilla china (arcilla hidratada) y de polvo fino de algunos minerales feldespáticos anhidros (sin agua) no descompuestos. Las arcillas varían en plasticidad, todas son más o menos maleables y capaces de ser moldeadas cuando se humedecen con agua. Las arcillas plásticas se usan en todos los tipos de alfarería, en ladrillos, baldosas, pipas, ladrillos refractarios y otros productos. Las variedades más comunes de arcilla y de roca de arcilla son: la arcilla china o caolín; la arcilla de pipa, similar al caolín pero con un contenido mayor de sílice; la arcilla de alfarería, no tan pura como la arcilla de pipa; la arcilla de escultura, o arcilla plástica, una arcilla fina de alfarería mezclada, a veces, con arena fina; arcilla para ladrillos, una mezcla de arcilla y arena con algo de materia ferruginosa (con hierro); la arcilla refractaria, con pequeño o nulo contenido de caliza, tierra alcalina o hierro (que actúan como flujos), por tanto, es infusible y muy refractaria; el esquisto y la marga.

En España existen muchas variedades de arcilla, desde la de cocción negra hasta el caolín, base de la riqueza arcillosa del país. Los yacimientos de arcilla más importantes se encuentran en Galicia, sierra de Guadarrama, Cataluña y País Vasco.

Acondicionamiento del suelo, técnica agrícola que permite mantener o mejorar la productividad de los suelos. Es la base de la agricultura científica, e implica seis prácticas esenciales: labranza adecuada, mantenimiento de un aporte apropiado de materia orgánica en el suelo, mantenimiento de un aporte conveniente de nutrientes, control de la contaminación del suelo, mantenimiento de una acidez correcta del suelo y control de la erosión.

Cuarzo, el mineral más común, compuesto por dióxido de silicio, o sílice, SiO2. Distribuido por todo el mundo como componente de rocas o en forma de depósitos puros, es un constituyente esencial de las rocas ígneas, como el granito, la riolita y la pegmatita, que contienen un exceso de sílice. En las rocas metamórficas, es un componente principal de distintos tipos de gneis y de esquisto; la roca metamórfica llamada cuarcita se compone casi en su totalidad de cuarzo. El cuarzo forma vetas y nódulos en rocas sedimentarias, sobre todo en caliza. La arenisca, roca sedimentaria, se compone sobre todo de cuarzo.

Muchas vetas de cuarzo depositadas en fisuras de rocas forman la matriz de muchos minerales valiosos. Los metales preciosos, como el oro, se encuentran en cantidad suficiente en las vetas de cuarzo como para justificar la extracción de este mineral. El cuarzo es también el constituyente principal de la arena.

Humus, materia orgánica en descomposición que se encuentra en el suelo y procede de restos vegetales y animales muertos. Al inicio de la descomposición, parte del carbono, hidrógeno, oxígeno y nitrógeno se disipan rápidamente en forma de agua, dióxido de carbono, metano y amoníaco, pero los demás componentes se descomponen lentamente y permanecen en forma de humus. La composición química del humus varía porque depende de la acción de organismos vivos del suelo, como bacterias, protozoos, hongos y ciertos tipos de escarabajos, pero casi siempre contiene cantidades variables de proteínas y ciertos ácidos urónicos combinados con ligninas y sus derivados. El humus es una materia homogénea, amorfa, de color oscuro e inodora. Los productos finales de la descomposición del humus son sales minerales, dióxido de carbono y amoníaco.

Al descomponerse en humus, los residuos vegetales se convierten en formas estables que se almacenan en el suelo y pueden ser utilizados como alimento por las plantas. La cantidad de humus afecta también a las propiedades físicas del suelo tan importantes como su estructura, color, textura y capacidad de retención de la humedad. El desarrollo ideal de los cultivos, por ejemplo, depende en gran medida del contenido en humus del suelo. En las zonas de cultivo, el humus se agota por la sucesión de cosechas, y el equilibrio orgánico se restaura añadiendo humus al suelo en forma de compost o estiércol. Véase también Mantillo; Acondicionamiento del suelo.