Rendimiento en las Asignaturas de Estadística en la carrera de Pedagogía

Educación española. Rendimiento estudiantil. Problemas de aprendizaje. Estadísticas. Problemas. Hipótesis. Investigación. Variables. Medias. Muestras

  • Enviado por: El remitente no desea revelar su nombre
  • Idioma: castellano
  • País: España España
  • 22 páginas
publicidad

DEFINICIÓN DEL PROBLEMA: Bajo rendimiento en las asignaturas de estadística en la carrera de Pedagogía.

MANIFESTACIONES DEL PROBLEMA:

• Los alumnos no presentan una actitud positiva hacia la estadística

• Falta de conocimientos previos por parte de los alumnos

• A los alumnos les cuesta seguir el ritmo en clase marcado por el profesor

• La diferencia en rendimiento en función de la metodología utilizada por el profesor.

• Índice elevado de alumnos repetidores en las asignaturas de estadística

• Los alumnos que vienen de bachillerato de letras presentan mayores dificultades que los provienen del resto de bachilleratos

HIPÓTESIS

1. Los alumnos que presentan una actitud positiva hacia la estadística tienen mayor rendimiento que los que tienen una actitud negativa

Variables:

- Independiente: actitud hacia la estadística dos grupos (positiva o negativa)

- Dependiente: rendimiento en estadística datos medidos a nivel de intervalo

2. Los alumnos de Pedagogía que no tienen conocimientos previos presentan un mayor grado de dificultad de aprendizaje que los alumnos que sí tienen conocimientos previos

Variables:

  • Independiente: conocimientos previos tres grupos (alto, medio y bajo)

- Dependiente: grado de dificultad en el aprendizaje datos medidos a nivel ordinal

3. La metodología del profesor influye en la motivación de los alumnos

Variables:

  • Independiente: metodología del profesor tres grupos (método A, B y C)

- Dependiente: motivación de los alumnos datos medidos a nivel ordinal

4. Los alumnos que proceden de bachillerato de ciencias tienen mayor rendimiento en las asignaturas de estadística

Variables:

  • Independiente: Tipo de bachillerato cursado dos grupos (ciencias o letras)

- Dependiente: Rendimiento datos medidos a nivel de intervalo en una escala de 0-10

5. Los alumnos repetidores presentan mayor facilidad de aprendizaje que los no repetidores

Variables:

  • Independiente: repetidor dos grupos (sí, no)

- Dependiente: dificultad de aprendizaje datos medidos a nivel de intervalo. De 0 a 10

6. La comprensión del cálculo numérico influye en el rendimiento de los alumnos en estadística

Variables:

  • Independiente: comprensión del cálculo numérico tres grupos (alto, medio y bajo)

- Dependiente: rendimiento en estadística datos medidos a nivel de intervalo

DISEÑO DE INVESTIGACIÓN

Nuestro diseño es de tipo experimental, en el que se establece una manipulación de la variable independiente, es decir aquello que supone causa de un efecto. Como afirma Kerlinger, el diseño es un plan, una estructura y una estrategia de investigación, con dos objetivos claros: dar respuesta a las preguntas de investigación y un control de la varianza.

ESCOGE UNA VARIABLE E INVENTA UN NÚMERO DE DATOS SOBRE 30 SUJETOS

El curso de 2º de Pedagogía en el año 2006/2007 está compuesto por 30 alumnos, de ellos 17 han cursado el bachillerato de letras y 13 el de ciencias. Debido a las asignaturas cursadas en los distintos tipos de bachillerato, los alumnos presentarán distinto rendimiento en matemáticas.

Variable nomial tipo de bachillerato cursado : ciencias (13 alumnos)

Letras (17 alumnos)

Variable dependiente rendimiento en matemáticas

VARIABLE CONTÍNUA: estadísticos descriptivos

Variable contínua rendimiento en matemáticas

Estadísticos descriptivos

N

Rango

Mínimo

Máximo

Media

Desv. típ.

Varianza

rendimiento

30

10

0

10

4,63

2,456

6,033

N válido (según lista)

30

MEDIA MUESTRAL Población, intervalo confidencial

Se pretende probar la Hipótesis de que la media poblacional () en Rendimiento en Matemáticas es igual a 6, siendo el nivel de confianza del 95%.

Contraste de Hipótesis

  • Formulación de hipótesis nula e hipótesis alterna.

  • Ho: =6 La media poblacional en rendimiento en matemáticas es estadísticamente igual a 6

    H1: "6 La media poblacional en rendimiento en matemáticas es estadísticamente diferente a 6

  • Elección de la prueba estadística

  • V.D: Rendimiento en matemáticas: datos medidos a nivel de intervalo

    N " 30, la prueba estadística para muestras grandes es la prueba modelo Z (razón crítica)

  • Especificación del nivel de error

  •  = 0,05

  • Definición de la Distribución Muestral

  • La Distribución Muestral es una distribución de probabilidad, que se forma con los valores de Z obtenidas en infinitas muestras aleatorias de la población, todas del mismo tamaño que la del problema de investigación.

  • Zona de rechazo/ aceptación de la hipótesis nula

  • La zona de rechazo de la hipótesis nula está formada por todos los valores de la distribución muestral, cuya probabilidad, si la hipótesis nula es verdadera sea " 0,05. Puesto que la hipótesis nula no indica la dirección de las diferencias, la zona de rechazo estará situada en ambos extremos de la distribución, e incluye todos los valores de diferencia cuya probabilidad sea  " 0,05

  • 'Bajo Rendimiento en las Asignaturas de Estadística en la Carrera de Pedagogía'
    Cálculos estadísticos

  • Z = - 0,558 ø0,558ø

  • Interpretación estadística y pedagógica

  • La probabilidad de obtener por azar una z empírica igual a 0,559 es mayor que la probabilidad de obtener por azar una z crítica igual a 1,96, por tanto se acepta la hipótesis nula. Al tomar este tipo de decisión se corre el riesgo de cometer un error de tipo II.

    La media poblacional es estadísticamente igual a 6, con un nivel de confianza de 0,95

    Interpretación pedagógica: la media poblacional en rendimiento en matemáticas es igual a 6.

    • ¿Entre qué valores oscilaría la media de rendimiento en matemáticas a un nivel de confianza del 95%?

    L.C.S = 9,444

    IC =

    L.C.I. = -0,184

    Entre los valores 9,444 y -0,184 oscila la media en rendimiento en matemáticas, a un nivel de confianza del 95%

    6.Variable continua 2ª relacionada con Variable continua 1ª: calcular rxy y significatividad - Predicción

    • ¿Podemos afirmar que la correlación entre el nivel de rendimiento en matemáticas y el cálculo numérico es estadísticamente diferente a 0 ( = 0,01)?

    Estadísticos descriptivos

    Media

    Desviación típica

    N

    rendimiento

    4,63

    2,456

    30

    calculo numerico

    5,37

    2,498

    30

    Correlaciones

    rendimiento

    calculo numerico

    Rendimiento

    Correlación de Pearson

    1

    ,933(**)

    Sig. (bilateral)

    .

    ,000

    N

    30

    30

    calculo numerico

    Correlación de Pearson

    ,933(**)

    1

    Sig. (bilateral)

    ,000

    .

    N

    30

    30

    ** La correlación es significativa al nivel 0,01 (bilateral).

    Correlación = 0,933

    Significatividad de rxy

    'Bajo Rendimiento en las Asignaturas de Estadística en la Carrera de Pedagogía'

    g.l: n-2

    t empírica = 13,70

    t crítica = 2,763

    Interpretación estadística y pedagógica

    La probabilidad de obtener por azar una t empírica = 13,70 es menor que la de obtener una t crítica = 2,763, por tanto se rechaza hipótesis nula. Al tomar esta decisión, podemos cometer un error de tipo I.

    La correlación entre la variable rendimiento en matemáticas y cálculo numérico es significativa al = 0,01

    La probabilidad es de 0,000, menor que 0,01, por lo tanto se rechaza hipótesis nula. La correlación entre estas dos variables es estadísticamente significativa.

    Los valores de la correlación de Pearson oscilan entre -1 y +1, al ser la correlación entre el cálculo numérico y el rendimiento en matemáticas 0,933, concluimos que a media que aumenta una, tiende a aumentar la otra, siendo la correlación muy alta y directamente proporcional.

    PREDICCIÓN:

    • ¿Qué rendimiento en matemáticas se predice para un alumno que ha obtenido un 7 en cálculo numérico?

    Y' = bX + a

    'Bajo Rendimiento en las Asignaturas de Estadística en la Carrera de Pedagogía'

    'Bajo Rendimiento en las Asignaturas de Estadística en la Carrera de Pedagogía'

    ; Puntuación que se pronostica en rendimiento en matemáticas, al sujeto que en cálculo numérico ha obtenido una puntuación de 7.

    N

    Y

    Y2

    X

    X2

    X*Y

    1

    3

    9

    3

    9

    9

    2

    5

    25

    6

    36

    30

    3

    2

    4

    3

    9

    6

    4

    4

    16

    7

    49

    28

    5

    8

    64

    9

    81

    72

    6

    7

    49

    9

    81

    63

    7

    9

    81

    10

    100

    90

    8

    0

    0

    1

    1

    0

    9

    10

    100

    9

    81

    90

    10

    1

    1

    2

    4

    2

    11

    6

    36

    7

    49

    42

    12

    4

    16

    5

    25

    20

    13

    3

    9

    4

    16

    12

    14

    1

    1

    1

    1

    1

    15

    2

    4

    4

    16

    8

    16

    4

    16

    6

    36

    24

    17

    5

    25

    5

    25

    25

    18

    7

    49

    8

    64

    56

    19

    6

    36

    5

    25

    30

    20

    8

    64

    9

    81

    72

    21

    2

    4

    2

    4

    4

    22

    3

    9

    4

    16

    12

    23

    6

    36

    6

    36

    36

    24

    4

    16

    5

    25

    20

    25

    5

    25

    5

    25

    25

    26

    5

    25

    6

    36

    30

    27

    7

    49

    8

    64

    56

    28

    5

    25

    5

    25

    25

    29

    4

    16

    3

    9

    12

    30

    3

    9

    4

    16

    12

    Y =139

    Y2 = 816

    X =161

    X2 =1045

    XY =912

    X: Cálculo numérico (V. Predoctora).

    Y: Rendimiento en matemáticas (Variable que se pronostica o variable criterio).

    6.Variable independiente 1ª (dos niveles): Prueba t aplicada a una de las variables continuas

    • Una muestra del curso de 2º de Pedagogía en el año 2006/2007 está compuesta por 25 alumnos, de ellos 12 han cursado el bachillerato de letras y 13 el de ciencias. Queremos comprobar la influencia que tiene el tipo de bachillerato procedente en el cálculo numérico, es decir, si se producen diferencias en el cálculo numérico entre los alumnos de bachillerato de letras y los alumnos de bachillerato de ciencias.

    bachillerato letras

    bachillerato ciencias

    3

    6

    3

    7

    9

    9

    1

    10

    2

    9

    5

    7

    4

    6

    1

    5

    4

    8

    2

    5

    4

    9

    6

    5

    4

    Estadísticos de grupo

    bachillerato

    N

    Media

    Desviación típ.

    Error típ. de la media

    calculo numerico

    Letras

    13

    3,77

    2,204

    ,611

    ciencias

    12

    7,17

    1,801

    ,520

    CONTRASTE DE HIPÓTESIS

    1). Formulación de hipótesis nula e hipótesis alterna

    Ho: 1 - 2 = 0; 1 = 2

    No existen diferencias estadísticamente significativas en cálculo numérico entre los alumnos de bachillerato de letras y los alumnos del bachillerato de ciencias. El rendimiento en cálculo numérico es el mismo en los alumnos de bachillerato de letras que en los alumnos de bachillerato de ciencias.

    H1:1 - 2 " 0; 1 " 2

    Existen diferencias estadísticamente significativas en cálculo numérico entre los alumnos de bachillerato de letras y los alumnos de bachillerato de ciencias. El rendimiento en cálculo numérico es distinto en los alumnos de bachillerato de letras y en los alumnos de bachillerato de ciencias.

    2) Elección de la prueba esatdística

    V.D: cálculo numérico datos medidos a nivel de intervalo

    V.I: tipo de bachillerato dos grupos independientes, bachillerato de letras y bachillerato de ciencias.

    Muestras pequeñas N < 30, Por tanto utilizamos la prueba T de Student de diferencias de medias, modelo t para dos muestras pequeñas e independientes.

    3) Especificación del nivel de error

     = 0,05

    4) Definición de la Distribución Muestral

    La distribución muestral es una distribución de probabilidad que se forma con los valores de t, obtenidos en infinitas muestras aleatorias de la misma población, todas del mismo tamaño que la del problema de investigación.

    5) Zona de rechazo/aceptación de hipótesis nula e hipótesis alterna

    La zona de rechazo de la hipótesis nula está formada por todos los valores de la distribución muestral, cuya probabilidad, si la hipótesis nula es verdadera, sea " 0,05. Puesto que la hipótesis alterna no indica la dirección de las diferencias, la zona de rechazo está situada en ambos extremos de la distribución e incluye todos los valores de diferencias cuya probabilidad sea " 0,05.

    6) Cálculo de la prueba

    'Bajo Rendimiento en las Asignaturas de Estadística en la Carrera de Pedagogía'

    La probabilidad asociada de t empírica (t = -4,199) es 0,00 < 0,05 (), por lo tanto rechazamos hipótesis nula y se concluye que existen diferencias estadísticamente significativas entre los alumnos de bachillerato de letras y los alumnos de bachillerato de ciencias en cuanto a cálculo numérico.

    Interpretación pedagógica:

    Concluimos que los alumnos que han cursado bachillerato de ciencias tienen mayor rendimiento en cálculo numérico que los alumnos que han cursado bachillerato de letras.

    PRUEBA F DE LEVENE:

    La probabilidad de obtener por azar una F empírica (0,51) es de 0,823 > (), 0,05.

    Aceptamos hipótesis nula, pudiendo cometer un error tipo II

    Se cumple el supuesto de homecedasticidad siendo las dos varianzas iguales

    PRUEBA F DE SNEDECOR (Análisis de varianza simple)

    En la clase de 2º de Pedagogía, un profesor quería comprobar la eficacia de diferentes metodologías utilizadas para impartir las clases. Los 30 sujetos de la clase fueron asignados al azar en tres grupos, según la distinta metodología utilizada, correspondiendo la metodología A al método tradicional (pizarra y libro), la metodología B al método multimedia (Gráficos y powerpoint) y la metodología C al método de aprendizaje cooperativo (trabajo en grupo). Se realizó una prueba de rendimiento a los estudiantes a final de curso, las puntuaciones correspondientes según los tres grupos fueron las siguientes:

    metodología A

    metodología B

    metodología C

    3

    6

    2

    5

    4

    3

    2

    3

    6

    4

    1

    4

    8

    2

    5

    7

    4

    5

    9

    5

    7

    0

    7

    5

    10

    6

    4

    1

    8

    3

    Descriptivos

    rendimiento


    N

    Media

    Desviación típica

    Error típico

    Intervalo de confianza para la media al 95%

    Mínimo