Radicales y raíces

Forma exponencial de un radical. Semejantes. Expresiones fraccionarias

  • Enviado por: Die
  • Idioma: castellano
  • País: Chile Chile
  • 7 páginas
publicidad
cursos destacados
Álgebra Elemental
Álgebra Elemental
En este curso de Álgebra Elemental se trataran las operaciones básicas entre expresiones algebraicas...
Ver más información

¡Ejercicios resueltos de Derivadas de Funciones!
¡Ejercicios resueltos de Derivadas de Funciones!
En este curso de 7 horas, el profesor Willians Medina explica de manera impecable el tema de Derivadas de funciones,...
Ver más información

publicidad

RADICALES

Se llama raíz n-ésima de un número a, y se escribe Radicales y raíces
, a un número b que elevado a na.

Ejemplos:

Radicales y raíces

Radicales y raíces
se llama radical; a, radicando; y n, índice de la raíz.

EXISTENCIA DE RADICALES.

Primera: si a es positivo, Radicales y raíces
existe, cualquiera que sea n.

Radicales y raíces

Segunda: si a es negativo, sólo existen sus raíces de índice impar.

Radicales y raíces

Tercera: salvo que a sea una potencia n-ésima de un número entero o fraccionario,Radicales y raíces
es un número irracional. Sólo podremos obtener su expresión decimal aproximada.

FORMA EXPONENCIAL DE LOS RADICALES

La raíz n-ésima de un número puede ponerse en forma de potencia:

Radicales y raíces

Esta nomenclatura es coherente con la definición.

Radicales y raíces

Es importante familiarizarse con la forma exponencial de los radicales, pues nos permitirá expresarlos y operar cómodamente con ellos.

Radicales y raíces

PROPIEDADES DE LOS RADICALES

Los radicales tienen una serie de propiedades, que debemos conocer y utilizar con soltura. Todas ellas son consecuencia inmediata de conocidas propiedades de las potencias. Veámoslas una a una, estudiando su significado en algunos ejemplos, y viendo sus aplicaciones.

Primera:

Radicales y raíces

Ejemplos:

Radicales y raíces

Esta propiedad tiene dos importantes aplicaciones:

simplificar radicales tal y como se ha visto en los ejemplos anteriores;

conseguir que dos o más radicales tengan el mismo índice (reducir a índice

común).

Radicales y raíces

Segunda:

Radicales y raíces

Ejemplos:

Radicales y raíces

Esta propiedad tiene dos aplicaciones importantes:

sacar un factor fuera de la raíz;

Radicales y raíces

de modo contrario, juntar varios radicales en uno solo.

Radicales y raíces

Tercera:

Radicales y raíces

Ejemplos:

Radicales y raíces

Esta propiedad, junto con la primera y segunda, sirve para poner productos y cocientes de radicales bajo una sola raíz.

Radicales y raíces

Cuarta:

Radicales y raíces

Ejemplos:

Radicales y raíces

Quinta:

Radicales y raíces

Ejemplos:

Radicales y raíces

RADICALES SEMEJANTES

Dos radicales son semejantes cuando tienen el mismo índice y radicando.

Los radicalesRadicales y raíces
y Radicales y raíces
son semejantes. Tienen el mismo índice, 2, y el mismo radicando, 3.

Radicales y raíces
y Radicales y raíces
son semejantes. Esto se comprueba sacando factores del radical.

Radicales y raíces

yRadicales y raíces
son semejantes. Esto se comprueba sacando factores del radical.

Radicales y raíces

Más ejemplos de radicales semejantes:

Radicales y raíces

OPERACIONES CON RADICALES

La suma o la resta de radicales semejantes es otro radical semejante a los dados, cuyo coeficiente es igual a la suma o la resta de los coeficientes de los radicales sumados o restados.

Radicales y raíces

Ejemplo:

Radicales y raíces

Si los radicales no son semejantes, la suma se deja indicada.

Ejemplo:

Radicales y raíces

El producto de radicales, con el mismo índice, es igual a otro radical cuyo coeficiente y radicando son iguales, respectivamente, a los productos de los coeficientes y radicandos de los factores.

Radicales y raíces

Ejemplo:

Radicales y raíces

El cociente de dos radicales con el mismo índice, es igual a otro radical, cuyo coeficiente y radicando son iguales, respectivamente, al cociente de los coeficientes y radicandos de los radicales dividendo y divisor.

Radicales y raíces

Ejemplo:

Radicales y raíces

La potencia de un radical es igual a otro radical, cuyo coeficiente y radicando están elevados a dicha potencia.

Radicales y raíces

Ejemplo:

Radicales y raíces

Es importante observar que al elevar al cuadrado un radical de índice 2, se obtiene el radicando.

Radicales y raíces

Ejemplo:

Radicales y raíces

EXPRESIONES FRACCIONARIAS

Al efectuar cálculos con radicales pueden surgir expresiones fraccionarias en las que aparezcan radicales.

Estas expresiones no son números racionales, pues para ello el numerador y el denominador tendrían que ser números enteros.

A estas expresiones las llamaremos expresiones fraccionarias, y verifican las mismas propiedades que los números racionales. Es especialmente importante recordar estas dos:

Primera: dos expresiones fraccionarias son equivalentes si los productos cruzados son iguales.

Segunda: si multiplicamos el numerador y el denominador de una expresión fraccionaria por una misma expresión distinta de cero, se obtiene una expresión fraccionaria equivalente a la primera.

Conclusión

Muchas personas encuentran las matemáticas un tema arduo, complicado y, a veces, indescifrable. Por eso, en esta carpeta hemos tratado de huir de formalismos, que en ocasiones consiguen desviar y hemos ejemplificado todas las definiciones

Las bases de las matemáticas no es saber mucho, sino saber hacer.

Bibliografía

Enciclopedia aritmética

Editorial el periódico

Enciclopedia temática interactiva matemática

Ediciones I y II

Lectus Vergara

Zeta Multimedia

9

Vídeos relacionados