Orígenes y evolución de Internet

Informática. Computación. Redes. Protocolos de transmisión. Ethernet

  • Enviado por: Basik14
  • Idioma: castellano
  • País: España España
  • 9 páginas
publicidad
publicidad

Orígenes  y evolución de Internet

Los orígenes de Internet se remontan a más de veinticinco años atrás, como un proyecto de investigación en redes de conmutación de paquetes, dentro de un ámbito militar. A  finales de los años sesenta (1969), en plena guerra fría, el Departamento de Defensa Americano (DoD) llegó a la conclusión de que su sistema de comunicaciones era demasiado vulnerable. Estaba basado en la comunicación telefónica (Red Telefónica Conmutada, RTC), y por tanto, en una tecnología denominada de conmutación de circuitos, (un circuito es una conexión entre llamante y llamado), que establece enlaces únicos y en número limitado entre importantes nodos o centrales, con el consiguiente riesgo de quedar aislado parte del país en caso de un ataque militar sobre esas arterias de comunicación.

Como alternativa, el citado Departamento de Defensa, a través de su Agencia de Proyectos de Investigación Avanzados (Advanced Research Projects Agency, ARPA) decidió estimular las redes de ordenadores mediante becas y ayudas a departamentos de informática de numerosas universidades y algunas empresas privadas. Esta investigación condujo a una red experimental de cuatro nodos, que arrancó en Diciembre de 1969, se denominó ARPAnet. La idea central de esta red era conseguir que la información llegara a su destino aunque parte de la red estuviera destruida.

ARPA desarrolló una nueva tecnología denominada conmutación de paquetes, cuya principal característica reside en fragmentar la información, dividirla en porciones de una determinada longitud a las que se llama paquetes. Cada paquete lleva asociada una cabecera con datos referentes al destino, origen, códigos de comprobación, etc. Así, el paquete contiene información suficiente como para que se le vaya encaminando hacia su destino en los distintos nodos que atraviese. El camino a seguir, sin embargo, no está preestablecido, de forma que si una parte de la red cae o es destruida, el flujo de paquetes será automáticamente encaminado por nodos alternativos. Los códigos de comprobación permiten conocer la pérdida o corrupción de paquetes, estableciéndose un mecanismo que permite la recuperación.  Este sistema de transmisión reúne múltiples ventajas: 

  • Fiabilidad, independiente de la calidad de líneas utilizadas y de las caídas de la red.

  • Distribución más fácil de los datos dado que al contener cada paquete la información necesaria para llegar a su destino, tenemos que paquetes con distinto objetivo pueden compartir un mismo canal o camino de comunicaciones.

  • Posibilidad de técnicas de compresión que aumentan la capacidad de transmisión y de encriptado que permiten una codificación, de forma que se asegure la confidencialidad de los datos.

Al igual que los equipos o las conexiones también se evolucionó en los servicios que ofrecía ARPAnet, ya que si bien al principio sólo permitía ejecutar programas en modo remoto, en 1972 se introdujo un sistema de correo electrónico, que liberó a los usuarios de la dependencia de los husos horarios (algo de importancia evidente en Estados Unidos, por su gran extensión), y supuso un sorprendente aumento en el tráfico generado, convirtiéndose en la actividad que mayor volumen generaba, en contra de las previsiones iniciales.

Para que los ordenadores puedan comunicarse entre sí es necesario que todos ellos envíen y reciban la información de la misma manera. La descripción de los pasos a seguir se denomina “protocolo”. En 1974, se presentó el protocolo “Transmission Control Protocol / Internet Protocol” (TCP/IP). Este protocolo proporcionaba un sistema independiente de intercambio de datos entre ordenadores y redes locales de distinto origen, eso sí, conservando las ventajas relativas a la técnica de conmutación de paquetes.

A principios de los ochenta el Departamento de Defensa de Estados Unidos decidió usar el protocolo TCP/IP para la red ARPAnet, desdoblándola en Arpanet y Milnet, siendo esta segunda de uso exclusivamente militar, conectada a Arpanet bajo un tráfico extremadamente controlado. Igualmente en Europa se creó la red Minet, como extensión de Milnet.

Dado que una gran cantidad de las organismos tenían sus propias redes de area local (RAL) conectadas a los nodos de la red se fue evolucionando hacia una red llamada ARPA Internet formada por miles de equipos. El nombre sufrió algunos cambios más, como: Federal Research Internet, TCP/IP Internet y finalmente, INTERNET.

Durante los últimos años ochenta Internet creció hasta incluir el potencial informático de las universidades y centros de investigación, lo que unido a la posterior incorporación de empresas privadas, organismos públicos y asociaciones de todo el mundo supuso un fuerte impulso para Internet que dejó de ser un proyecto con protección estatal para convertirse en la mayor red de ordenadores del mundo, formada por más de cincuenta mil redes, cuatro millones de sistemas y más de setenta millones de usuarios.

Teniendo en  cuenta que se estima un crecimiento del censo de usuarios de Internet de aproximadamente un diez por ciento mensual, se deduce que para el año dos mil se superarían los trescientos millones de usuarios conectados a la `Red de redes'. Internet no es simplemente una red de ordenadores, es decir, unos cuantos ordenadores conectados entre sí. Se trata de una asociación de miles de redes conectadas entre sí. Todo ello da lugar a la “RED DE REDES”, en la que un ordenador de una red puede intercambiar información  con otro situado en una red remota.

En gran parte, este espectacular crecimiento se debe a la notable mejora en la facilidad de uso de los servicios ofrecidos, dado que, aún manteniéndose los servicios originales de transferencia de ficheros, correo electrónico o acceso remoto, la irrupción de la `TELARAÑA MUNDIAL', World Wide Web (www), un servicio de consulta de documentos hipertextuales, ha sido el paso definitivo hacia la popularidad de la que actualmente goza.
 

Elementos imprescindibles para acceder a Internet

Para utilizar Internet no es preciso entender exactamente como funciona, aunque un poco de información al respecto nunca está de más. Son necesarios los siguientes elementos:

  • El PC y el módem:  a Internet se accede desde un PC conectado al proveedor mediante un módem que por su puesto deberá estar conectado a una línea telefónica.

  • Proveedor: abre las puertas de Internet. El proveedor te proporciona acceso a la Red, un número de teléfono para acceder a ella y una dirección de correo electrónico.

PROTOCOLOS

IP (Internet Protocol) fue uno de los cuatro protocolos que fueron desarrollados, pero todos trabajaban sobre éste. Los otros protocolos fueron el User Datagram Protocol (UDP), el Transmission Control Protocol (TCP) y el Internet Control Message Protocol (ICMP).

¿Cómo funciona Internet?

Desde su aparición, Internet ha funcionado gracias a la colaboración entre distintas partes, llamadas partidos de cooperación. Ciertas funciones claves han sido críticas para su operatividad, siendo la más importante entre ellas la especificación de protocolos de comunicación, por medio de los cuales operan los componentes del sistema. Estos fueron originalmente desarrollados en el programa de investigación DARPA, pero en los últimos años este trabajo ha abarcado un espectro de influencias mucho mayor. Actualmente, además de los protocolos TCP/IP, existen nuevos, tales como: El conjunto de protocolos Open System Interconnection (OSI) , promulgados por laInternational Standards Organization (ISO) , que tratan de definir de un modo más amplio cómo ciertas aplicaciones deben ser realizadas: mensajería electrónica, conexiones online y transferencia de ficheros. 

El apoyo "regional" en Internet es proporcionado por varios consorcios de redes/networks y el apoyo "local" está a cargo de las instituciones de investigación y de educación. Gran parte de la ayuda que la comunidad de Internet recibe proviene del gobierno federal y estatal de los Estados Unidos, puesto que el Internet era originalmente parte de un programa de investigación federal-financiado, que posteriormente se ha convertido en una parte esencial de la infraestructura de la investigación de dicho país. Tanto lo relacionado con el dominio público como las implementaciones comerciales de los cien protocolos del TCP/IP estuvieron disponibles a partir de fines de los ochentas. Es precisamente en esa época cuando la población de usuarios de Internet y de componentes de la red se amplió internacionalmente y comenzó a incluir recursos de corte comercial. De hecho, gran parte del sistema hoy en día se compone de redes privadas que brindan facilidades a nivel mundial en el plano educacional, de instituciones de investigación , de negocios y gubernamentales; la industria, asimismo, ha aportado una considarable contribución, dando origen a una nueva etapa en el desarrollo de la red. 

Por otro lado, en Europa y en otras partes del mundo, el apoyo proviene de esfuerzos de cooperatividad internacional y de organizaciones de investigación locales. Durante el curso de su evolución, particularmente después de 1989, el sistema de Internet empezó a integrar soportes a otras áreas de los protocolos en cuanto al establecimiento de la red se refiere. A principios de 1990, los protocolos de OSI también se pusieron en práctica, y hacia fines del año siguiente, Internet había crecido hasta incluir alrededor de 5,000 redes en más de 36 países, sirviendo a un número mayor a de 700,000 computadoras host/ cliente, utilizadas por más de 400,000 personas.

Actualmente el énfasis en el sistema está en el trabajo de integración multiprotocolar, y en particular , en la integración de los protocolos del OSI (Open Systems Interconnection ) a su configuración.

Desde finales de los años 80, la red Internet ha crecido exponencialmente a nivel de número de redes conectadas, como de ordenadores y de tráfico. Además, el porcentaje de usuarios del ámbito comercial y empresarial crece rápidamente.

En 1992 Internet conectaba más de un millón de "hosts" (ordenadores "madre" que daban acceso a los usuarios finales) y enlazaba más de 10.000 redes de 50 países.

Niveles Fisico y de enlace: Ethernet

Los protocolos que pertenecen al nivel de enlace o interfaz de red de Internet (niveles físico y de enlace en el modelo OSI) deben añadir más información a los datos provenientes de IP para que la transmisión pueda realizarse. Es el caso, por ejemplo, de las redes Ethernet, de uso muy extendido actualmente. Este tipo de redes utiliza su propio sistema de direcciones, junto con una nueva cabecera para los datos.

Las redes locales Ethernet son posiblemente la tecnología que domina en Internet. Este tipo de redes fue desarrollado por Xerox durante los años 70, y entre sus características podemos destacar su alto nivel de rendimiento, la utilización de cable coaxial para la transmisión, una velocidad de 10Mbit/seg. y CSMA/CD como técnica de acceso.

Ethernet es un medio en el que todos los ordenadores pueden acceder a cada uno de los paquetes que se envían, aunque un ordenador sólo tendrá que prestar atención a aquellos que van dirigidos a él mismo.

La técnica de acceso CSMA/CD (Carrier Sense and Multiple Access with Collition Detection) permite a que todos los dispositivos puedan comunicarse en el mismo medio, aunque sólo puede existir un único emisor en cada instante. De esta manera todos los sistemas pueden ser receptores de forma simultánea, pero la información tiene que ser transmitida por turnos. Si varios dispositivos intentan transmitir en el mismo instante la colisión es detectada, de forma que cada uno de ellos volverá a intentar la transmisión transcurrido un pequeño intervalo de tiempo aleatorio.

Suponemos que el protocolo de nivel de transporte utilizado es el TCP. De esta manera, cuando se pretende enviar un mensaje IP a través de un red Ethernet, la estructura final del mismo quedaría con el siguiente formato:

Cabecera
Ethernet

Cabecera IP
(20 byte)

Cabecera TCP
(20 byte)

Datos

Checksum
Ethernet

La cabecera Ethernet consta de 14 bytes, en los que se incluyen 3 campos: La dirección de origen (48 bit), la dirección de destino (48 bit), y el código de tipo (16 bit) que se utiliza para permitir el uso de diferentes protocolos en la misma red (TCP/IP es uno de ellos). El checksum o campo de detección de errores (32 bit) no se incluye en la cabecera Ethernet, sino que se sitúa al final del mensaje, y se calcula a partir de todos los datos del paquete completo. A estos datos hay que sumar un campo de una longitud de 64 bit que se envía inmediatamente antes de la cabecera, y cuya misión es sincronizar la línea para marcar el momento en que comienzan los datos del paquete completo.

Es importante notar que las direcciones utilizadas por Ethernet no guardan ninguna relación con las direcciones de Internet. Así como las direcciones IP de Internet son asignadas por el usuario, las direcciones Ethernet se asignan "de fábrica". Esta es la razón por la que se utilizan 48 bit en las direcciones, ya que de esta manera se obtiene un número lo suficientemente elevado de direcciones como para asegurar que no sea necesario repetir los valores.

En una red Ethernet los paquetes son transportados de un ordenador a otro de manera que son visibles para todos, siendo necesario un procedimiento para identificar los paquetes que pertenecen a cada ordenador. Cuando el paquete es recibido en el otro extremo, la cabecera y el checksum se retiran, se comprueba que los datos corresponden a un mensaje IP, y este mensaje se pasa al protocolo IP para que sea procesado.

El tamaño máximo para un paquete de datos varía de unas redes a otras. En el caso de Ethernet el tamaño puede ser de 1500 bytes, para otras redes puede ser menor o bastante mayor en el caso de redes muy rápidas. Aquí surge otro problema, pues normalmente los paquetes de tamaño mayor resultan más eficientes para transmitir grandes cantidades de información. Sin embargo, se debe tener en cuenta que las redes del receptor y el emisor pueden ser muy distintas. Por este motivo el protocolo TCP está preparado para negociar el tamaño máximo de los datagramas que serán enviados durante el resto de la conexión. Pero así el problema no queda completamente resuelto porque hasta que los paquetes lleguen a su destino es muy probable que tengan que atravesar otras redes intermedias, las cuales puede que no sean capaces de soportar el tamaño de los paquetes que se está enviando. Se hace necesario entonces dividir el paquete original en otros más pequeños para que puedan ser manejados: Esto se conoce como fragmentación (fragmentation).

La fragmentación es posible gracias a determinados campos que el protocolo IP introduce en su cabecera. Estos campos de fragmentación se usan cuando ha sido necesario dividir el paquete enviado originalmente, de manera que éste pueda ser reconstruido por el host receptor a través del protocolo TCP/IP. Este último proceso de reconstrucción de los paquetes se conoce como "reensamblaje" (reassembly).

ARP (Address Resolution Protocol)


El Protocolo de Resolución de Direcciones (ARP) es necesario debido a que las direcciones Ethernet y las direcciones IP son dos números distintos y que no guardan ninguna relación. Así, cuando pretendemos dirigirnos a un host a través de su dirección de Internet se necesita convertir ésta a la correspondiente dirección Ethernet.

ARP es el protocolo encargado de realizar las conversiones de dirección correspondientes a cada host. Para ello cada sistema cuenta con una tabla con la dirección IP y la dirección Ethernet de algunos de los otros sistemas de la misma red. Sin embargo, también puede ocurrir que el ordenador de destino no se encuentre en la tabla de direcciones, teniendo entonces que obtenerla por otros medios.

Con la finalidad de obtener una dirección Ethernet destino que no se encuentra en la tabla de conversiones se utiliza el mensaje ARP de petición. Este mensaje es enviado como broadcast, es decir, que estará disponible para que el resto de los sistemas de la red lo examinen, y el cual contiene una solicitud de la dirección final de un sistema a partir de su dirección IP. Cuando el ordenador con el que se quiere comunicar analiza este mensaje comprueba que la dirección IP corresponde a la suya y envía de regreso el mensaje ARP de respuesta, el cual contendrá la dirección Ethernet que se estaba buscando. El ordenador que solicitó la información recibirá entonces el mensaje de respuesta y añadirá la dirección a su propia tabla de conversiones para futuras referencias.

El mensaje de petición ARP contiene las direcciones IP y Ethernet del host que solicita la información, además de la dirección IP del host de destino. Estos mensajes son aprovechados en algunas ocasiones también por otros sistemas de la red para actualizar sus tablas, ya que el mensaje es enviado en forma de broadcast. El ordenador de destino, una vez que ha completado el mensaje inicial con su propia dirección Ethernet, envía la respuesta directamente al host que solicitó la información.