Origen del álgebra

Relaciones aritméticas. Álgebra de Muhammad. Ecuaciones. Historia del álgebra

  • Enviado por: F-14
  • Idioma: castellano
  • País: Colombia Colombia
  • 4 páginas

publicidad
cursos destacados
Transformada de Laplace
Transformada de Laplace
En este curso aprenderás todo lo relacionado con la transformada de Laplace. Los temas a grandes rasgos son: 1....
Ver más información

Tutorías de Matemática y Ciencia en vivo
Tutorías de Matemática y Ciencia en vivo
Este curso es en relidad un medio de pago para aquellos que deseen tomar el nuevo servicio de tutoría que presta...
Ver más información


Trabajo

Sobre:

“Origen Del Álgebra”

Matemáticas.

2002-09-11

Índice.

  • Introducción.

  • El Origen Del Álgebra.

  • Historia Del Álgebra.

  • Conclusión.

  • Bibliografía.

  • 1. Introducción.

    Álgebra, rama de las matemáticas en la que se usan letras par representar relaciones aritméticas. Al igual que en la aritmética, las operaciones fundamentales del álgebra son adición, sustracción, multiplicación, división y cálculo de raíces. La aritmética, sin embargo, no es capaz de generalizar las relaciones matemáticas, como el teorema de Pitágoras, que dice que en un triángulo rectángulo el área del cuadrado que tiene como lado la hipotenusa es igual a la suma de las áreas de los cuadrados cuyos lados son los catetos. La aritmética sólo da casos particulares de esta relación (por ejemplo, 3, 4 y 5, ya que 32 + 42 = 52). El álgebra, por el contrario, puede dar una generalización que cumple las condiciones del teorema: a2 + b2 = c2.


    El álgebra clásica, que se ocupa de resolver ecuaciones, utiliza símbolos en vez de números específicos y operaciones aritméticas para determinar cómo usar dichos símbolos. El álgebra moderna ha evolucionado desde el álgebra clásica al poner más atención en las estructuras matemáticas. Los matemáticos consideran al álgebra moderna como un conjunto de objetos con reglas que los conectan o relacionan. Así, en su forma más general, se dice que el álgebra es el idioma de las matemáticas.

    2. El Origen del Álgebra.

    Los babilonios desarrollaron técnicas y métodos para medir y contar, impulsados en parte por la necesidad de resolver problemas prácticos de agrimensura, de intercambio comercial y del desarrollo de las técnicas cartográficas. Entre las tablillas babilónicas descubiertas se han encontrado ejemplos de tablas de raíces cuadradas y cúbicas, y el enunciado y solución de varios problemas puramente algebraicos, entres ellos algunos equivalentes a lo que hoy se conoce como una ecuación cuadrática. Un examen cuidadoso de las tablillas babilónicas muestra claramente que mediante esos cálculos sus autores no sólo intentaban resolver problemas del mundo real, sino otros más abstractos y artificiales, y que lo hacían para desarrollar técnicas de solución y ejercitarse en su aplicación.

    Uno de ellos, en términos modernos, dice: “He sumado el área del cuadrado con los dos tercios del lado del cuadrado y el resultado es

    7/12

    Se requiere hallar la longitud del lado del cuadrado”. En cuanto que, hasta la mitad del siglo XIX, el álgebra se ocupó principalmente de resolver ecuaciones de este tipo, puede decirse que fue en Babilonia donde tuvo su origen esta ciencia.

    Fueron los árabes quienes le dieron a la nueva ciencia de plantear y resolver ecuaciones un nombre: aljabr. La nueva civilización que surgió en la península arábiga en la primera mitad del siglo VII, habría de transformar muy pronto la vida de gran parte del mundo habitado de entonces. Menos de un siglo después de la captura de La Meca por Mahoma en el año 630 d.C., el ejército islámico había convertido a las tribus politeístas dcl Medio Oriente y usurpado al imperio bizantino los territorios de Siria y Egipto. La conquista de Persia se completó hacia el año 641 d.C. Los sucesores de Mahoma, los califas, primero establecieron su capital en Damasco pero, tras cien años de guerras, el califato se dividió en varias partes.

    La fundación en 766 d.C. por parte del califa al — Mansur de Bagdad como la nueva capital de su califato, significó cl comienzo de una etapa más tolerante del islamismo y permitió el desarrollo intelectual de sus habitantes. Su sucesor, el califa Harun al — Rashid, quien gobernó entre 786 y 809, estableció en Bagdad una biblioteca en la que se reunieron manuscritos provenientes de varias academias del Cercano Oriente, algunas de las cuales habían sido establecidas por miembros de las antiguas academias de Atenas y Alejandría que tuvieron que cerrarse a raíz de la persecución de los romanos. Un programa de tradt4cciones al árabe de textos clásicos de la matemática y ciencia de los griegos y los hindúes era una de las actividades del Bayal al—Iliktna (Casa dc la sabiduría), un instituto de investigaciones que fundara cl califa al — Ma' mun y que funcionó durante más de 200 años.

    Muhammmad ibn Musa al — Khwarizmi, un miembro del Bayal al—Hikma fue el autor de varios tratados sobre astronomía y matemáticas, entre ellos uno dc los primeros tratados islámicos acerca del álgebra. Fue gracias a la traducción al latín de su libro acerca del sistema de numeración hindú, Algorithmi de numero indorum, que Europa Occidental conoció ese nove~k~so sistema de numeración. Su obra más importante, sin embargo, fue su tratado de álgcbra quc, con el título Ílisab al—/abra wal— muqabala (La ciencia de la reducción y confrontación) probablemente significaba la ciencia de las ecuacionts.

    El Álgebra de Muhammad contiene instrucciones prácticas para resolver ciertas ecuaciones lineales y cuadráticas. “Lo que la gente quiere, dice el autor, cuando realiza sus cálculo.., es un número”. Ese número no es más que la solución de una ecuación.

    Otro importante algebrista árabe fue Omar Khayyam (1048—1131), mejor conocido en Occidente por su Rubaiyat, una colección de unos 600 poemas. Fue él el primero en hacer una clasificación sistemática de la ecuaciones cúbicas y resolver algunas de ellas.

    La contribución de los algebristas islámicos de los siglos Xl y XII en el desarrollo del álgebra habría sido más notoria si no hubiera tardado tanto en ejercer su influencia en Europa, donde, un poco después, el álgebra habría de consolidarse definitivamente.

    3. Historia del Álgebra.

    La historia del álgebra comenzó en el antiguo Egipto y Babilonia, donde fueron capaces de resolver ecuaciones lineales (ax = b) y cuadráticas (ax2 + bxc), así como ecuaciones indeterminadas como x2 + y2 = z2, con varias incógnitas. Los antiguos babilonios resolvían cualquier ecuación cuadrática empleando esencialmente los mismos métodos que hoy se enseñan.


    Los matemáticos alejandrinos Herón y Diofante continuaron con la tradición de Egipto y Babilonia, aunque el libro Las aritméticas de Diofante es de bastante más nivel y presenta muchas soluciones sorprendentes para ecuaciones indeterminadas difíciles. Esta antigua sabiduría sobre resolución de ecuaciones encontró, a su vez, acogida en el mundo islámico, en donde se la llamó “ciencia de reducción y equilibrio”. (La palabra árabe al-abr que significa `reducción', es el origen de la palabra álgebra). En el siglo IX, el matemático al-Jwarizmi escribió uno de los primeros libros árabes de álgebra, una presentación sistemática de la teoría fundamental de ecuaciones, con ejemplos y demostraciones incluidas. A finales del siglo IX, el matemático egipcio Abu Kamil enunció y demostró las leyes fundamentales e identidades del álgebra, y resolvió problemas tan complicados como encontrar las x, y, z que cumplen x + y + z = 10, x2 + y2 = z2, y xz = y2.


    En las civilizaciones antiguas se escribían las expresiones algebraicas utilizando abreviaturas sólo ocasionalmente; sin embargo, en la edad media, los matemáticos árabes fueron capaces de describir cualquier potencia de la incógnita x, y desarrollaron el álgebra fundamental de los polinomios, aunque sin usar los símbolos modernos. Esta álgebra incluía multiplicar, dividir y extraer raíces cuadradas de polinomios, así como el conocimiento del teorema del binomio. El matemático, poeta y astrónomo persa Omar Khayyam mostró cómo expresar las raíces de ecuaciones cúbicas utilizando los segmentos obtenidos por intersección de secciones cónicas, aunque no fue capaz de encontrar una fórmula para las raíces. La traducción al latín del Álgebra de al-Jwarizmi fue publicada en el siglo XII. A principios del siglo XIII, el matemático italiano Leonardo Fibonacci consiguió encontrar una aproximación cercana a la solución de la ecuación cúbica x3 + 2x2 + cx = d. Fibonacci había viajado a países árabes, por lo que con seguridad utilizó el método arábigo de aproximaciones sucesivas.

    A principios del siglo XVI los matemáticos italianos Scipione del Ferro, Tartaglia y Gerolamo Cardano resolvieron la ecuación cúbica general en función de las constantes que aparecen en la ecuación. Ludovico Ferrari, alumno de Cardano, pronto encontró la solución exacta para la ecuación de cuarto grado y, como consecuencia, ciertos matemáticos de los siglos posteriores intentaron encontrar la fórmula de las raíces de las ecuaciones de quinto grado y superior. Sin embargo, a principios del siglo XIX el matemático noruego Niels Abel y el francés Évariste Galois demostraron la inexistencia de dicha fórmula.

    Un avance importante en el álgebra fue la introducción, en el siglo XVI, de símbolos para las incógnitas y para las operaciones y potencias algebraicas. Debido a este avance, el Libro III de la Geometría (1637), escrito por el matemático y filósofo francés René Descartes se parece bastante a un texto moderno de álgebra. Sin embargo, la contribución más importante de Descartes a las matemáticas fue el descubrimiento de la geometría analítica, que reduce la resolución de problemas geométricos a la resolución de problemas algebraicos. Su libro de geometría contiene también los fundamentos de un curso de teoría de ecuaciones, incluyendo lo que el propio Descartes llamó la regla de los signos para contar el número de raíces verdaderas (positivas) y falsas (negativas) de una ecuación. Durante el siglo XVIII se continuó trabajando en la teoría de ecuaciones y en 1799 el matemático alemán Carl Friedrich Gauss publicó la demostración de que toda ecuación polinómica tiene al menos una raíz en el plano complejo (véase Número (matemáticas): Números complejos).

    En los tiempos de Gauss, el álgebra había entrado en su etapa moderna. El foco de atención se trasladó de las ecuaciones polinómicas al estudio de la estructura de sistemas matemáticos abstractos, cuyos axiomas estaban basados en el comportamiento de objetos matemáticos, como los números complejos, que los matemáticos habían encontrado al estudiar las ecuaciones polinómicas. Dos ejemplos de dichos sistemas son los grupos y las cuaternas, que comparten algunas de las propiedades de los sistemas numéricos, aunque también difieren de ellos de manera sustancial. Los grupos comenzaron como sistemas de permutaciones y combinaciones (véase Combinatoria) de las raíces de polinomios, pero evolucionaron para llegar a ser uno de los más importantes conceptos unificadores de las matemáticas en el siglo XIX. Los matemáticos franceses Galois y Augustin Cauchy, el británico Arthur Cayley y los noruegos Niels Abel y Sophus Lie hicieron importantes contribuciones a su estudio. Las cuaternas fueron descubiertas por el matemático y astrónomo irlandés William Rowan Hamilton, quien desarrolló la aritmética de los números complejos para las cuaternas; mientras que los números complejos son de la forma a + bi, las cuaternas son de la forma a + bi + cj + dk.


    Después del descubrimiento de Hamilton, el matemático alemán Hermann Grassmann empezó a investigar los vectores. A pesar de su carácter abstracto, el físico estadounidense J. W. Gibbs encontró en el álgebra vectorial un sistema de gran utilidad para los físicos, del mismo modo que Hamilton había hecho con las cuaternas. La amplia influencia de este enfoque abstracto llevó a George Boole a escribir Investigación sobre las leyes del pensamiento (1854), un tratamiento algebraico de la lógica básica. Desde entonces, el álgebra moderna —también llamada álgebra abstracta— ha seguido evolucionando; se han obtenido resultados importantes y se le han encontrado aplicaciones en todas las ramas de las matemáticas y en muchas otras ciencias.

    4. Conclusión.

    Me parece que el álgebra es un importante invento porque de el derivan mas ciencias, además pienso que las matemáticas se utilizan para todo y son muy importantes para la vida diaria. Las matemáticas han existido desde hace mucho tiempo y las utilizaron las antiguas Civilizaciones del mundo.

    5. Bibliografía.

    • Lumina CD.

    • Codesis CD.

    • Álgebra.

    Vídeos relacionados