Organización de las proteínas

Aminoácidos. Estructura de la proteína. Clasificación. Proteínas simples y conjugadas

  • Enviado por: Anita Terfloth
  • Idioma: castellano
  • País: España España
  • 5 páginas

publicidad
cursos destacados
Geometría Analítica
Geometría Analítica
En el curso de Geometría Analítica aprenderás los fundamentos de esta rama de las...
Ver más información

Ejercicios resueltos de Química General
Ejercicios resueltos de Química General
Serie de ejercicios resueltos de Química General 

Este curso va ligado al curso actual de...
Ver más información


CLASIFICACION Y ESTRUCTURA

ESTRUCTURA

La organización de una proteína viene definida por cuatro niveles estructurales denominados: estructura primaria, estructura secundaria, estructura terciaria y estructura cuaternaria. Cada una de estas estructuras informa de la disposición de la anterior en el espacio.


ESTRUCTURA PRIMARIA

La estructura primaria es la secuencia de aa. de la proteína. Nos indica qué aas. componen la cadena polipeptídica y el orden en que dichos aas. se encuentran. La función de una proteína depende de su secuencia y de la forma que ésta adopte.


ESTRUCTURA SECUNDARIA

La estructura secundaria es la disposición de la secuencia de aminoácidos en el espacio.Los aas., a medida que van siendo enlazados durante la síntesis de proteínas y gracias a la capacidad de giro de sus enlaces, adquieren una disposición espacial estable, la estructura secundaria.

Existen dos tipos de estructura secundaria:

la a(alfa)-hélice

la conformación beta


Esta estructura se forma al enrollarse helicoidalmente sobre sí misma la estructura primaria. Se debe a la formación de enlaces de hidrógeno entre el -C=O de un aminoácido y el -NH- del cuarto aminoácido que le sigue.

En esta disposición los aas. no forman una hélice sino una cadena en forma de zigzag, denominada disposición en lámina plegada.

Presentan esta estructura secundaria la queratina de la seda o fibroína.

ESTRUCTURA TERCIARIA

La estructura terciaria informa sobre la disposición de la estructura secundaria de un polipéptido al plegarse sobre sí misma originando una conformación globular.

En definitiva, es la estructura primaria la que determina cuál será la secundaria y por tanto la terciaria..

Esta conformación globular facilita la solubilidad en agua y así realizar funciones de transporte, enzimáticas, hormonales, etc.

Esta conformación globular se mantiene estable gracias a la existencia de enlaces entre los radicales R de los aminoácidos. Aparecen varios tipos de enlaces:

el puente disulfuro entre los radicales de aminoácidos que tiene azufre.

los puentes de hidrógeno

los puentes eléctricos

las interacciones hifrófobas.

ESTRUCTURA CUATERNARIA

Esta estructura informa de la unión , mediante enlaces débiles ( no covalentes) de varias cadenas polipeptídicas con estructura terciaria, para formar un complejo proteico. Cada una de estas cadenas polipeptídicas recibe el nombre de protómero.

El número de protómeros varía desde dos como en la hexoquinasa, cuatro como en la hemoglobina, o muchos como la cápsida del virus de la poliomielitis, que consta de 60 unidades proteícas.

'Organización de las proteínas'

CLASIFICACION

Las proteínas poseen veinte aminoácidos, los cuales se clasifican en:
Glicina, alamina, valina, leucina, isoleucina, fenil, alanina, triptófano, serina, treonina, tirosina, prolina, hidroxiprolina, metionina, cisteína, cistina, lisina, arginina, histidina, ácido aspártico y ácido glutámico.

Según su composición

pueden clasificarse en proteínas "simples" y proteínas "conjugadas".

Las "simples" o “Holoproteínas” son aquellas que al hidrolizarse producen únicamente aminoácidos, mientras que las "conjugadas" o “Heteroproteínas” son proteínas que al hidrolizarse producen también, además de los aminoácidos, otros componentes orgánicos o inorgánicos. La porción no protéica de una proteína conjugada se denomina "grupo prostético". Las proteínas cojugadas se subclasifican de acuerdo con la naturaleza de sus grupos prostéticos.

La siguiete tabla muestra la clasificación completa.

CONJUGADAS

CONJUGADAS

NOMBRE

COMPONENTE NO PROTEICO

Nucleoproteínas

Acidos nucléicos

Lipoproteínas

Lípidos

Fosfoproteínas

Grupos fosfato

Metaloproteínas

Metales

Glucoproteínas

Monosacáridos

Glucoproteínas

Ribonucleasa

Mucoproteínas

Anticuerpos

Hormona luteinizante

Lipoproteínas

De alta, baja y muy baja densidad, que transportan lípidos en la sangre.

Nucleoproteínas

Nucleosomas de la cromatina

Ribosomas

Cromoproteínas

Hemoglobina, hemocianina, mioglobina, que transportan oxígeno

Citocromos, que transportan electrones

SIMPLES

Globulares

Prolaminas:Zeína (maíz),gliadina (trigo), hordeína (cebada)

Gluteninas:Glutenina (trigo), orizanina (arroz).

Albúminas:Seroalbúmina (sangre), ovoalbúmina (huevo), lactoalbúmina (leche)

Hormonas: Insulina, hormona del crecimiento, prolactina, tirotropina

Enzimas: Hidrolasas, Oxidasas, Ligasas, Liasas, Transferasas...etc.


Fibrosas

Colágenos: en tejidos conjuntivos, cartilaginosos

Queratinas: En formaciones epidérmicas: pelos, uñas, plumas, cuernos.

Elastinas: En tendones y vasos sanguineos

Fibroínas: En hilos de seda, (arañas, insectos)

Según su conformación

Se entiende como conformación, la orientación tridimensional que adquieren los grupos característicos de una molécula en el espacio, en virtud de la libertad de giro de éstos sobre los ejes de sus enlaces . Existen dos clases de proteínas que difieren en sus conformacxiones características: "proteínas fibrosas" y "proteínas globulares".

Las proteínas fibrosas se constituyen por cadenas polipeptídicas alineadas en forma paralela. Esta alineación puede producir dos macro-estructuras diferentes: fibras que se trenzan sobre si mismas en grupos de varios haces formando una "macro-fibra", como en el caso del colágeno de los tendones o la a-queratina del cabello; la segunda posibilidad es la formación de láminas como en el caso de las b-queratinas de las sedas naturales.

Las proteínas fibrosas poseen alta resistencia al corte por lo que son los principales soportes estructurales de los tejidos; son insolubles en agua y en soluciones salinas diliudas y en general más resistentes a los factores que las desnaturalizan.

Las proteínas globulares son conformaciones de cadenas polipeptídicas que se enrollan sobre si mismas en formas intrincadas como un "nudillo de hilo enredado" . El resultado es una macro-estructura de tipo esférico.

La mayoría de estas proteínas son solubles en agua y por lo general desempeñan funciones de transporte en el organismo. Las enzimas, cuyo papel es la catálisis de las reacciones bioquímicas, son proteínas globulares.

Según su función

La diversidad en las funciones de las proteínas en el organismo es quizá la más extensas que se pueda atribuir a una familia de biomoléculas.

Enzimas: Son proteínas cuya función es la "catalisis de las reacciones bioquímicas". Algunas de stas reacciones son muy sencillas; otras requieren de la participación de verdaderos complejos multienzimáticos. El poder catalítico de las enzimas es extraordinario: aumentan la velocidad de una reacción, al menos un millon de veces.

Las enzimas pertenecen al grupo de las proteínas globulares y muchas de ellas son proteínas conjugadas.

Proteínas de transporte: Muchos iones y moléculas específicas son transportados por proteínas específicas. Por ejemplo, la hemoglobina transporta el oxígeno y una porción del gas carbónico desdes y hacia los pulmones, respectivamente. En la memebrana mitocondrial se encuentra una serie de proteínas que trasnportan electrones hasta el oxígeno en el proceso de respiración aeróbica.

Proteínas del movimiento coordinado: El músculo está compuesto por una variedad de proteínas fibrosas. Estas tienen la capacidad de modificar su estructura en relación con cambios en el ambiente electroquímico que las rodea y producir a nivel macro el efecto de una contracción muscular.

Proteínas estructurales o de soporte: Las proteínas fibrosas como el colágeno y las a-queratinas constituyen la estructura de muchos tejidos de soporte del organismo, como los tendones y los huesos.

Anticuerpos: Son proteínas altamenmte específicas que tienen la capacidad de identificar susustancias extrañas tale como los virus, las bacterias y las células de otros organismos.

Proteoreceptores: Son proteínas que participan activamente en el proceso de recepción de los impulsos nerviosos como en el caso de la "rodapsina" presente en los bastoncillos de la retina del ojo.

Hormonas y Proteínas represoras: son proteínas que participan en la regulación de procesos metabólicos; las proteínas represoras son elementos importantes dentro del proceso de transmisión de la información genética en la bisíntesis de otras moléculas.

FUNCIONES

Las proteinas determinan la forma y la estructura de las células y dirigen casi todos los procesos vitales. Las funciones de las proteinas son específicas de cada una de ellas y permiten a las células mantener su integridad, defenderse de agentes externos, reparar daños, controlar y regular funciones, etc...Todas las proteinas realizan su función de la misma manera: por unión selectiva a moléculas. Las proteinas estructurales se agregan a otras moléculas de la misma proteina para originar una estructura mayor. Sin embargo,otras proteinas se unen a moléculas distintas: los anticuerpos a los antígenos específicos, la hemoglobina al oxígeno, las enzimas a sus sustratos, los reguladores de la expresión génica al ADN, las hormonas a sus receptores específicos, etc...

A continuación se exponen algunos ejemplos de proteinas y las funciones que desempeñan:

Función ESTRUCTURAL

-Algunas proteinas constituyen estructuras celulares:

Ciertas glucoproteinas forman parte de las membranas celulares y actuan como receptores o facilitan el transporte de sustancias.

Las histonas, forman parte de los cromosomas que regulan la expresión de los genes.

-Otras proteinas confieren elasticidad y resistencia a órganos y tejidos:

El colágeno del tejido conjuntivo fibroso.

La elastina del tejido conjuntivo elástico.

La queratina de la epidermis.

-Las arañas y los gusanos de seda segregan fibroina para fabricar las telas de araña y los capullos de seda, respectivamente.

Función ENZIMATICA

-Las proteinas con función enzimática son las más numerosas y especializadas. Actúan como biocatalizadores de las reacciones químicas del metabolismo celular.

Función HORMONAL

-Algunas hormonas son de naturaleza protéica, como la insulina y el glucagón (que regulan los niveles de glucosa en sangre) o las hormonas segregadas por la hipófisis como la del crecimiento o la adrenocorticotrópica (que regula la síntesis de corticosteroides) o la calcitonina (que regula el metabolismo del calcio).

Función REGULADORA

-Algunas proteinas regulan la expresión de ciertos genes y otras regulan la división celular (como la ciclina).

Función HOMEOSTATICA

-Algunas mantienen el equilibrio osmótico y actúan junto con otros sistemas amortiguadores para mantener constante el pH del medio interno.

Función DEFENSIVA

Las inmunoglogulinas actúan como anticuerpos frente a posibles antígenos.

La trombina y el fibrinógeno contribuyen a la formación de coágulos sanguíneos para evitar hemorragias.

Las mucinas tienen efecto germicida y protegen a las mucosas.

Algunas toxinas bacterianas, como la del botulismo, o venenos de serpientes, son proteinas fabricadas con funciones defensivas.

Función de TRANSPORTE

La hemoglobina transporta oxígeno en la sangre de los vertebrados.

La hemocianina transporta oxígeno en la sangre de los invertebrados.

La mioglobina transporta oxígeno en los músculos.

Las lipoproteinas transportan lípidos por la sangre.

Los citocromos transportan electrones.

Función CONTRACTIL

La actina y la miosina constituyen las miofibrillas responsables de la contracción muscular.

La dineina está relacionada con el movimiento de cilios y flagelos.

Función DE RESERVA

La ovoalbúmina de la clara de huevo, la gliadina del grano de trigo y la hordeina de la cebada, constituyen la reserva de aminoácidos para el desarrollo del embrión.

La lactoalbúmina de la leche.