Física
Óptica
INDICE
INTRODUCCIÓN
La óptica
La óptica se ocupa del estudio de la luz, de sus características y de sus manifestaciones. La reflexión y la refracción por un lado, y las interferencias y la difracción por otro, son algunos, de los fenómenos ópticos fundamentales. Los primeros pueden estudiarse siguiendo la marcha de los rayos luminosos. Los segundos se interpretan recurriendo a la descripción en forma de onda. El conocimiento de las leyes de la óptica permite comprender cómo y por qué se forman esas imágenes, que constituyen para el hombre la representación más valiosa de su mundo exterior.
«Una casa o un árbol proyectando sombra en un día soleado, un espejo o la superficie de un estanque devolviendo nuestra propia imagen, la apariencia quebrada de una varilla parcialmente sumergida en el agua, la ilusión de presencia de agua sobre el asfalto recalentado, el arco iris cruzando el cielo después de una tormenta, son parte de las incontables experiencias visuales que responden a tres simples leyes empíricas» (B. Rossi).
La óptica, o estudio de la luz, constituye un ejemplo de ciencia milenaria. Ya Arquímedes en el siglo III antes de Cristo era capaz de utilizar con fines bélicos los conocimientos entonces disponibles sobre la marcha de los rayos luminosos a través de espejos y lentes. Sin planteamientos muy elaborados sobre cuál fuera su naturaleza, los antiguos aprendieron, primero, a observar la luz para conocer su comportamiento y, posteriormente, a utilizarla con diversos propósitos. Es a partir del siglo XVII con el surgimiento de la ciencia moderna, cuando el problema de la naturaleza de la luz cobra una importancia singular como objeto del conocimiento científico.
Estamos tan familiarizados con la luz que normalmente no somos conscientes de que se trata de un fenómeno físico singular. De su estudio se ocupa la óptica (de la raíz griega optós, visible), que constituye una de las ramas de la física más fértiles en ideas que han revolucionado nuestra visión de la naturaleza y es asimismo una disciplina científica que ha tenido, y tiene, aplicaciones prácticas de enorme trascendencia: piénsese, por ejemplo, que la astronomía no pudo empezar a desarrollarse realmente como ciencia hasta la invención del telescopio, y lo mismo cabe decir de la biología en relación al microscopio. La óptica se divide en dos ramas: óptica geométrica y óptica física. La primera se ocupa del estudio de todos aquellos fenómenos ópticos que pueden tratarse sin necesidad de un modelo sobre la naturaleza de la luz, mientras que la óptica física se ocupa precisamente de la naturaleza de la luz y de los fenómenos que se explican haciendo referencia a ella.
En resumen la óptica es la rama de la física que se ocupa de la propagación y el comportamiento de la luz. En un sentido amplio, la luz es la zona del espectro de radiación electromagnética que se extiende desde los rayos X hasta las microondas, e incluye la energía radiante que produce la sensación de visión. El estudio de la óptica se divide en dos ramas, la óptica geométrica y la óptica física, aunque recientemente se considera una tercera llamada óptica cuántica.
CONCEPTOS FUNDAMENTALES
La luz es un agente físico capaz de impresionar nuestra retina haciendo posible la visión. Con respecto a la luz, los cuerpos pueden ser luminosos (fuentes o focos), si emiten luz propia, o iluminados, si se ven gracias a la luz que reciben.
Se denomina oscuridad a la total ausencia de sensación luminosa.
Fuente puntual es una fuente luminosa cuyas dimensiones pueden considerarse nulas con respecto a la distancia a los cuerpos que ilumina.
El color es una característica psicofísica de la luz que se basa en diversas características físicas, en particular en la longitud de onda. En general, y si no se dice otra cosa, nos referiremos a la luz blanca, que es la que produce la misma sensación de color que la luz solar cenital media.
En cuanto a su capacidad para dejar pasar la luz, los cuerpos pueden ser opacos, si, colocados entre una fuente luminosa y el observador, no permiten recibir ninguna sensación luminosa, y transparentes, si dejan pasar la luz a su través. A su vez, los cuerpos transparentes pueden ser diáfanos, si permiten ver los objetos situados detrás de ellos (por ejemplo, el vidrio de la ventana), y translúcidos o semitransparentes, si a través de ellos puede reconocerse la luz, pero no la forma de los objetos (por ejemplo, las vidrieras).
NATURALEZA DE LA LUZ
La naturaleza de la luz ha sido objeto de la atención de filósofos y científicos desde tiempos remotos. Ya en la antigua Grecia se conocían y se manejaban fenómenos y características de la luz tales como la reflexión, la refracción y el carácter rectilíneo de su propagación, entre otros. No es de extrañar entonces que la pregunta ¿qué es la luz? se planteara como una exigencia de un conocimiento más profundo. Los griegos primero y los árabes después sostuvieron que la luz es una emanación del ojo que se proyecta sobre el objeto, se refleja en él y produce la visión. El ojo sería, pues, el emisor y a la vez el receptor de los rayos luminosos.
A partir de esa primera explicación conocida, el desarrollo histórico de las ideas sobre la naturaleza de la luz constituye un ejemplo de cómo evolucionan las teorías y los modelos científicos a medida que, por una parte, se consolida el concepto de ciencia y, por otra, se obtienen nuevos datos experimentales que ponen a prueba las ideas disponibles.
El modelo corpuscular de Newton
Isaac Newton (1642-1727) se interesó vivamente en los fenómenos asociados a la luz y los colores. A mediados del siglo XVII, propuso una teoría o modelo acerca de lo que es la luz, cuya aceptación se extendería durante un largo periodo de tiempo. Afirmaba que el comportamiento de la luz en la reflexión y en la refracción podría explicarse con sencillez suponiendo que aquélla consistía en una corriente de partículas que emergen, no del ojo, sino de la fuente luminosa y se dirigen al objeto a gran velocidad describiendo trayectorias rectilíneas. Empleando sus propias palabras, la luz podría considerarse como «multitudes de inimaginables pequeños y velocísimos corpúsculos de varios tamaños».
Al igual que cualquier modelo científico, el propuesto por Newton debería resistir la prueba de los hechos experimentales entonces conocidos, de modo que éstos pudieran ser interpretados de acuerdo con el modelo. Así, explicó la reflexión luminosa asimilándola a los fenómenos de rebote que se producen cuando partículas elásticas chocan contra una pared rígida. En efecto, las leyes de la reflexión luminosa resultaban ser las mismas que las de este tipo de colisiones.
Con el auxilio de algunas suposiciones un tanto artificiales, consiguió explicar también los fenómenos de la refracción, afirmando que cerca de la superficie de separación de dos medios transparentes distintos, los corpúsculos luminosos sufren unas fuerzas atractivas de corto alcance que provocan un cambio en la dirección de su propagación y en su velocidad. Aunque con mayores dificultades que las habidas para explicar la reflexión, logró deducir las leyes de la refracción utilizando el modelo corpuscular.
El modelo ondulatorio de Huygens
El físico holandés Christian Huygens (16291695) dedicó sus esfuerzos a elaborar una teoría ondulatorio acerca de la naturaleza de la luz que con el tiempo vendría a ser la gran rival de la teoría corpuscular de su contemporáneo Newton.
Era un hecho comúnmente aceptado en el mundo científico de entonces, la existencia del «éter cósmico» o medio sutil y elástico que llenaba el espacio vacío. En aquella época se conocían también un buen número de fenómenos característicos de las ondas.
En todos los casos, para que fuera posible su propagación debía existir un medio material que hiciera de soporte de las mismas. Así, el aire era el soporte de las ondas sonoras y el agua el de las ondas producidas en la superficie de un lago.
Huygens supuso que todo objeto luminoso produce perturbaciones en el éter, al igual que un silbato en el aire o una piedra en el agua, las cuales dan lugar a ondulaciones regulares que se propagan a su través en todas las direcciones del espacio en forma de ondas esféricas. Además, según Huygens, cuando un punto del éter es afectado por una onda se convierte, al vibrar, en nueva fuente de ondas.
Estas ideas básicas que definen su modelo ondulatorio para la luz le permitieron explicar tanto la propagación rectilínea como los fenómenos de la reflexión y la refracción, que eran, por otra parte, comunes a los diferentes tipos de ondas entonces conocidas. A pesar de la mayor sencillez y el carácter menos artificioso de sus suposiciones, el modelo de Huygens fue ampliamente rechazado por los científicos de su época.
La enorme influencia y prestigio científico adquirido por Newton se aliaron con la falta de un lenguaje matemático adecuado, en contra de la teoría de Huygens para la luz.
El físico inglés Thomas Young (1772-1829) publicó en 1881 un trabajo titulado «Esbozos de experimentos e investigaciones respecto de la luz y el sonido». Utilizando como analogía las ondas en la superficie del agua, descubrió el fenómeno de interferencias luminosas, según el cual cuando dos ondas procedentes de una misma fuente se superponen en una pantalla, aparecen sobre ella zonas de máxima luz y zonas de oscuridad en forma alternada.
El hecho de que, en diferentes zonas, luz más luz pudiese dar oscuridad, fue explicado por Young en base a la teoría ondulatorio, suponiendo que en ellas la cresta de una onda coincidía con el valle de la otra, por lo que se producía una mutua destrucción.
Aunque las ideas de Young tampoco fueron aceptadas de inmediato, el respaldo matemático efectuado por Agustín Fresnel (1788-1827) catorce años después, consiguió poner fuera de toda duda la validez de las ideas de Young sobre tales fenómenos, ideas que se apoyaban en el modelo ondulatorio propuesto por Huygens.
El modelo corpuscular era incapaz de explicar las interferencias luminosas. Tampoco podía explicar los fenómenos de difracción en los cuales la luz parece ser capaz de bordear los obstáculos o doblar las esquinas como lo demuestra la existencia de una zona intermedia de penumbra entre las zonas extremas de luz y sombra. Las ideas de Huygens prevalecían, al fin, sobre las de Newton tras una pugna que había durado cerca de dos siglos.
La luz como onda electromagnética
El físico escocés James Clark Maxwell en 1865 situó en la cúspide las primitivas ideas de Huygens, aclarando en qué consistían las ondas luminosas. Al desarrollar su teoría electromagnética demostró matemáticamente la existencia de campos electromagnéticos que, a modo de ondas, podían propasarse tanto por el espacio vacío como por el interior de algunas sustancias materiales.
Maxwell identificó las ondas luminosas con sus teóricas ondas electromagnéticas, prediciendo que éstas deberían comportarse de forma semejante a como lo hacían aquéllas. La comprobación experimental de tales predicciones vino en 1888 de la mano del físico alemán Henrich Hertz, al lograr situar en el espacio campos electromagnéticos viajeros, que fueron los predecesores inmediatos de las actuales ondas de radio. De esta manera se abría la era de las telecomunicaciones y se hacía buena la teoría de Maxwell de los campos electromagnéticos.
La diferencia entre las ondas de radio (no visibles) y las luminosas tan sólo radicaba en su longitud de onda, desplazándose ambas a la velocidad de la luz, es decir, a 300 000 km/s. Posteriormente una gran variedad de ondas electromagnéticas de diferentes longitudes de onda fueron descubiertas, producidas y manejadas, con lo que la naturaleza ondulatorio de la luz quedaba perfectamente encuadrada en un marco más general y parecía definitiva. Sin embargo, algunos hechos experimentales nuevos mostrarían, más adelante, la insuficiencia del modelo ondulatorio para describir plenamente el comportamiento de la luz.
Los fotones de Einstein
Max Planck (1858-1947), al estudiar los fenómenos de emisión y absorción de radiación electromagnética por parte de la materia, forzado por los resultados de los experimentos, admitió que los intercambios de energía que se producen entre materia y radiación no se llevaba a cabo de forma continua, sino discreta, es decir, como a saltos o paquetes de energía, lo que Planck denominó cuantos de energía.
Esta era una idea radicalmente nueva que Planck intentó conciliar con las ideas imperantes, admitiendo que, si bien los procesos de emisión de luz por las fuentes o los de absorción por los objetos se verificaba de forma discontinua, la radiación en sí era una onda continua que se propagaba como tal por el espacio.
Así las cosas, Albert Einstein (1879-1955) detuvo su atención sobre un fenómeno entonces conocido como efecto fotoeléctrico. Dicho efecto consiste en que algunos metales como el cesio, por ejemplo, emiten electrones cuando son iluminados por un haz de luz.
El análisis de Einstein reveló que ese fenómeno no podía ser explicado desde el modelo ondulatorio, y tomando como base la idea de discontinuidad planteada con anterioridad por Plank, fue más allá afirmando que no sólo la emisión y la absorción de la radiación se verifica de forma discontinua, sino que la propia radiación es discontinua.
Estas ideas supusieron, de hecho, la reformulación de un modelo corpuscular. Según el modelo de Einstein la luz estaría formada por una sucesión de cuantos elementales que a modo de paquetes de energía chocarían contra la superficie del metal, arrancando de sus átomos los electrones más externos. Estos nuevos corpúsculos energéticos recibieron el nombre de fotones (fotos en griego significa luz).
La luz ¿onda o corpúsculo?
La interpretación efectuada por Einstein del efecto fotoeléctrico fue indiscutible, pero también lo era la teoría de Maxwell de las ondas electromagnéticas.
Ambas habían sido el producto final de la evolución de dos modelos científicos para la luz, en un intento de ajustarlos con más fidelidad a los resultados de los experimentos. Ambos explican la realidad, a pesar de lo cual parecen incompatibles.
Sin embargo, cuando se analiza la situación resultante prescindiendo de la idea de que un modelo deba prevalecer necesariamente sobre el otro, se advierte que de los múltiples fenómenos en los que la luz se manifiesta, unos, como las interferencias o la difracción, pueden ser descritos únicamente admitiendo el carácter ondulatorio de la luz, en tanto que otros, como el efecto fotoeléctrico, se acoplan sólo a una imagen corpuscular. No obstante, entre ambos se obtiene una idea más completa de la naturaleza de la luz. Se dice por ello que son complementarios.
Las controversias y los antagonismos entre las ideas de Newton y Huygens han dejado paso, al cabo de los siglos, a la síntesis de la física actual. La luz es, por tanto, onda, pero también corpúsculo, manifestándose de uno u otro modo en función de la naturaleza del experimento o del fenómeno mediante el cual se la pretende caracterizar o describir.
La energía radiante tiene una naturaleza dual, y obedece leyes que pueden explicarse a partir de una corriente de partículas o paquetes de energía, los llamados fotones, o a partir de un tren de ondas transversales. El concepto de fotón se emplea para explicar las interacciones de la luz con la materia que producen un cambio en la forma de energía, como ocurre con el efecto fotoeléctrico o la luminiscencia. El concepto de onda suele emplearse para explicar la propagación de la luz y algunos de los fenómenos de formación de imágenes. En las ondas de luz, como en todas las ondas electromagnéticas, existen campos eléctricos y magnéticos en cada punto del espacio, que fluctúan con rapidez. Como estos campos tienen, además de una magnitud, una dirección determinada, son cantidades vectoriales. Los campos eléctrico y magnético son perpendiculares entre sí y también perpendiculares a la dirección de propagación de la onda. La onda luminosa más sencilla es una onda sinusoidal pura, llamada así porque una gráfica de la intensidad del campo eléctrico o magnético trazada en cualquier momento a lo largo de la dirección de propagación sería la gráfica de una función seno. El número de oscilaciones o vibraciones por segundo en un punto de la onda luminosa se conoce como frecuencia. La longitud de onda es la distancia a lo largo de la dirección de propagación entre dos puntos con la misma `fase', es decir, puntos que ocupan posiciones equivalentes en la onda. Por ejemplo, la longitud de onda es igual a la distancia que va de un máximo de la onda sinusoidal a otro, o de un mínimo a otro. En el espectro visible, las diferencias en longitud de onda se manifiestan como diferencias de color. El rango visible va desde 350 nanómetros (violeta) hasta 750 nanómetros (rojo), aproximadamente (un nanómetro, nm, es una milmillonésima de metro). La luz blanca es una mezcla de todas las longitudes de onda visibles. No existen límites definidos entre las diferentes longitudes de onda, pero puede considerarse que la radiación ultravioleta va desde los 350 nm hasta los 10 nm. Los rayos infrarrojos, que incluyen la energía calorífica radiante, abarcan las longitudes de onda situadas aproximadamente entre 750 nm y 1 mm. La velocidad de una onda electromagnética es el producto de su frecuencia y su longitud de onda. En el vacío, la velocidad es la misma para todas las longitudes de onda. La velocidad de la luz en las sustancias materiales es menor que en el vacío, y varía para las distintas longitudes de onda; este efecto se denomina dispersión. La relación entre la velocidad de la luz en el vacío y la velocidad de una longitud de onda determinada en una sustancia se conoce como índice de refracción de la sustancia para dicha longitud de onda. El índice de refracción del aire es 1,00029 y apenas varía con la longitud de onda. En la mayoría de las aplicaciones resulta suficientemente preciso considerar que es igual a 1.
COMPOSICIÓN DE LA LUZ
La luz es una forma de energía y aunque esta no es visible, no existe ninguna dificultad para determinar su presencia. El sol irradia continuamente luz en todas direcciones; una pequeña porción de ella cae sobre la tierra y la ilumina. Aunque estamos continuamente sometidos a la radiación luminosa, no sentimos impacto por que no se trata de una cosa material. Lo que podemos sentir, en cambio, es el calor del sol, por que su luz es convertida en energía calorífica, que el cuerpo detecta; por ejemplo podemos sentir calor proveniente de una lámpara eléctrica.
Algunas sustancias como el aire y el vidrio, son transparentes a la luz, por lo cual permiten el paso de esta a través de ellas. Cuando la luz atraviesa el vidrio se propaga algo mas lentamente que en el aire.
Cuando la luz atraviesa una lamina de vidrio se desvía al entrar en él y vuelve a desviarse al salir. Ambas desviaciones se compensan mutuamente por que ambas caras del vidrio son paralelas. Como la dirección es la misma al entrar que al salir, los objetos vistos a través del vidrio no parecen distorsionados; si las superficies fueran curvas, la dirección del rayo de luz al salir seria distinta que al entrar. Esta propiedad es la que utilizan las lentes para desviar los rayos luminosos del modo deseado.
Los objetos opacos brillantes reflejan los rayos luminosos. El aluminio y la plata bruñidos son muy buenos reflectores. Los espejos poseen en la parte de atrás una fina capa de plata con una capa de pintura roja que la cubre pa0ra evitar que por fricción n se desprenda. Al mirar un espejo, la luz que llega a nuestros ojos proviene de su superficie y da la impresión de que la imagen se encuentra en algún punto por detrás del espejo. Un espejo plano da una imagen del mismo tamaño que el objeto. En el calidoscopio la luz reflejada en los trozos de papel de colores es reflejada nuevamente en los dos espejos que lo forman, y con cada reflexión se produce una nueva imagen. La serie de imágenes se nos aparecen en forma de un hermoso dibujo.
El ojo que sigue la dirección de los rayos provenientes del espejo, podrá comprobar que para la mayoría de las posiciones del objeto la imagen aparece ya sea aumentado o disminuida de tamaño. Puede también aparecer invertida.
Aunque para el ojo la luz parece ser incolora, en realidad se compone de varios colores (rojo, anaranjado, amarillo, verde, azul, índigo y violeta).
Unidos, estos colores dan luz incolora (a menudo denominada luz blanca). Isaac Newton fue el primero en demostrar que esto era así haciendo pasar un haz de luz blanca a través de un prisma. La luz emergente estaba dividida en sus colores componentes y al intercalar una pantalla en su camino sobre ella aparecía un arco iris. Esta banda luminosa era la imagen de la fuente luminosa, con una imagen por cada color de luz componente. Estas imágenes constituyen el espectro de luz incidente. El espectroscopio es un instrumento que emplea un prisma para obtener el espectro. Cuando un elemento químico se encuentra a una temperatura suficientemente alta, emite luz. La luz de un elemento en particular dará siempre el mismo espectro. Por eso el espectroscopio se emplea en análisis químicos y también para analizar la luz proveniente de las estrellas y determinar los elementos que la componen.
El vidrio puede fabricarse en varios colores. El vidrio rojo es el que permite únicamente el paso a la luz roja, absorbe la luz de los otros colores. El vidrio azul, en cambio absorber las luces de todos los colores menos el azul.
Un objeto azul opaco se ve azul porque absorbe la luz roja, anaranjada, amarilla, verde, índigo y violeta que caen sobre él y refleja solamente la luz a la que es la luz que ve el ojo. Si el objeto refleja todas las luces, se ve blanco, si no refleja ninguna se ve negro
Si sobre un objeto rojo incide solamente luz roja, esta luz será reflejada y el objeto sé vera roja. Pero un objeto verde absolverá toda la luz roja que caiga sobre él. Nada se reflejara, por lo cual el objeto parecerá de color negro.
El ojo puede detectar la luz porque posee una parte sensible a la luz, la retina. Los rayos luminosos que llegan al ojo son concentrados por la cornea y el cristalino, de modo que forman una imagen sobre la retina. Esta imagen es transmitida en forma de impulsos nerviosos por el nervio óptico hasta el cerebro que la traduce en un cuadro.
El reflector blanco ilumina el blanco vestido de la bailarina en el escenario, los espectadores lo ven blanco, pero si el reflector cambia a verde, rojo, azul, o cualquier otro color, el vestido aparentemente cambiara su color, tomando el de los reflectores que lo ilumina.
El vestido blanco de la bailarina se ve blanco por que refleja hacia los ojos de los espectadores la luz blanca del reflector. Pero un objeto blanco parece blanco solamente por que refleja todos los colores que caen sobre él. Cuando el reflector cambia al rojo, solo cae sobre la luz roja y por ende solo puede reflejar la luz roja. El vestido reflejara luz verde y parecerá verde, luz azul y sé vera azul. Para que el vestido adquiera cualquier color no es necesario, sin embargo, poseer luces de muchos colores. En realidad, cualquier efecto de color puede obtenerse mezclando los rayos de tres reflectores: Rojos, azules, y verde, son estos los colores primarios de la luz. Mezclando los haces luminosos en las proporciones adecuadas, puede obtenerse cualquier color visible. Un reflector verde y otro rojo de igual intensidad sobre el vestido blanco lo harán parecer, sorprendentemente, amarillo. Agréguese un reflector azul y el vestido volverá a ser blanco.
La luz blanca del sol o del reflector es en sí una mezcla de diferentes colores.
"Él triángulo" de colores es un método conveniente para recordar los resultados de mezclar cruces de diferentes colores. La combinación de colores primarios contiguos da el color intermedio. Los colores opuestos en él triangulo se denominan complementarios. Su propiedad fundamental es que al combinarse dan nuevamente luz blanca.
Así como con tres colores primarios se podrían obtener todos los demás colores. Hay tres pigmentos (sustancias colorantes, pinturas) que al ser mezclados producen un pigmento capas de reflejar luz de cualquier color. Los tres pigmentos primarios no son los mismos que los tres colores primarios de luz. Son el amarillo, él púrpura (magenta) y el azul verdoso, los colores secundarios de la luz. Cada pigmento primario absorbe uno de los colores primarios de la luz y refleja los otros dos.
El amarillo es uno de los pigmentos primarios. Un vestido amarillo bajo la luz blanca (igual a una, mezcla de luces con rojo, verde y azul), refleja los dos colores de luz que compone la luz amarillo-rojo y verde. Absorbe todo el azul, color complementario del amarillo. Un vestido azul verdoso refleja azul y verde y absorbe todo el rojo.
De modo que si se mezclan pigmentos amarillo y azul verdoso en igual porción, el pigmento resultante absorberá todas las luces menos la verde, que será reflejada. Por eso la pintura amarilla mezclada con pintura azul verdosa da pintura verde.
El color de cualquier pigmento es el resultado de sustraer de luz blanca todos los colores que absorben los pigmentos constituyentes, y reflejar solamente los colores comunes a todos los constituyentes. Puede eliminarse toda luz reflejada mezclando pigmentos púrpura y verde. Él púrpura solo reflejara rojo y azul, y el verde solo reflejara verde. No hay colores comunes a ambos pigmentos que puedan ser reflejados y el objeto se ve negro. Los colores deben, sin embargo, sé mezclados en las proporciones correctas. Si hay más verde que púrpura, algo de luz verde no podrá ser absorbida por él púrpura y el pigmento resultante será verde oscuro. Los pigmentos complementarios son rojos y azules verdoso, verde y púrpura, azul y amarillo. Pero a diferencia de mezcla de luces de colores, la suma de dos pigmentos complementarios da negro. Colores complementarios de luz, al ser mezclados en las proporciones correctas, dan blanco porque el rayo resultante contiene todos los constituyentes de la luz blanca. Los pigmentos complementarios dan negro al ser mezclados porque constituyen una sustancia que absorbe todos los colores constituyentes de la luz blanca. El pigmento ha sustraído de la luz blanca todos los colores que pudieron ser absorbidos, no dejando nada para reflejar.
EL «EXPERIMENTUM CRUCIS» DE NEWTON
Newton había encontrado ya que la luz blanca es una luz compuesta, pero deseaba demostrar de una forma indiscutible que los colores que emergían del prisma no eran modificaciones de la luz blanca, como sugerían sus adversarios científicos. Para conseguirlo ideó un «experimentum crucis» o experimento crucial que consistía, en esencia, en someter a cada uno de los colores obtenidos por la acción de un primer prisma, a un segundo prisma, y comprobar por una parte que no podía descomponerse más y por otra su diferente comportamiento en cuanto al grado de desviación sufrida por efecto del prisma. Newton resume sus resultados en los siguientes términos: «En primer lugar descubrí que los rayos que son más refractados que otros de la misma incidencia exhiben colores púrpuras y violetas, mientras que aquellos que exhiben el rojo son menos retractados, y los azules, verdes y amarillos poseen refracciones intermedias... En segundo y a la inversa, descubrí que rayos de igual incidencia son gradualmente más y más refractados según su disposición a exhibir colores en este orden: rojo, amarillo, verde, azul y violeta con todos sus colores intermedios».
PROPAGACIÓN de la luz
A diferencia del sonido, la luz se propaga en el vacío, es decir, no necesita de un soporte material para su propagación. En un medio isótropo, la luz se propaga en línea recta. Esto es algo que puede observarse fácilmente, por ejemplo, en el polvillo del aire de una habitación en la que no existe ninguna fuente luminosa y en la que se deja entrar una mínima cantidad de luz proveniente del exterior. Asimismo, si interponemos entre nuestro ojo y una fuente de luz tres cartulinas con un pequeño orificio, sólo veremos la fuente de luz si los tres orificios están alineados.
El conjunto de rayos se denomina haz de rayos. Puede ser convergente, cuando todos los rayos que lo forman tienen un punto común y el sentido es hacia dicho punto; divergente, si las direcciones de todos los rayos tienen un punto en común, que es el origen de éstos; y paralelo, cuando todos los rayos tienen la misma dirección y el mismo sentido.
La propagación rectilínea de la luz da origen a sombras y penumbras. Si se interpone un cuerpo opaco entre una fuente luminosa puntual S y una pantalla, sobre ésta se observan dos zonas: una zona denominada sombra, privada de luz y limitada por una línea semejante al contorno del cuerpo, y otra zona perfectamente iluminada. El cono formado por los rayos tangentes al cuerpo constituye el cono de sombra. Si el foco no es un punto sino una superficie, en la pantalla se distinguen tres zonas: una zona interior de sombra; una intermedia de penumbra, parcialmente iluminada, puesto que un punto de esta zona recibe luz de sólo una parte de los puntos de la fuente; y una zona de luz a donde llegan rayos de todos los puntos de la fuente. Todas estas zonas están limitadas por las tangentes interiores y exteriores trazadas desde la superficie luminosa al cuerpo interpuesto.
LA PRIMERA DETERMINACIÓN EXPERIMENTAL DE LA VELOCIDAD DE LA LUZ
En el año 1672 el astrónomo danés Olaf Roëmer consiguió realizar la primera determinación de la velocidad de la luz, considerando para ello distancias interplanetarias. Al estudiar el periodo de revolución de un satélite (tiempo que emplea en describir una órbita completa) del planeta Júpiter, observó que variaba con la época del año entre dos valores extremos. Roëmer interpretó este hecho como consecuencia de que la Tierra, debido a su movimiento de traslación en torno al Sol, no se encontraba siempre a la misma distancia del satélite, sino que ésta variaba a lo largo del año. Los intervalos medidos representaban realmente la suma del periodo de revolución más el tiempo empleado por la luz en recorrer la distancia entre el satélite y la Tierra. Por esta razón la luz procedente del satélite tardaría más tiempo en llegar al observador cuando éste se encontrase en la posición más alejada, lo que se traduciría en un intervalo de tiempo algo más largo.
La diferencia entre los correspondientes tiempos extremos sería, entonces, el tiempo empleado por la luz en recorrer el diámetro de la órbita terrestre en tomo al Sol. Dado que en su época éste se estimaba en 300 000 000 km y el resultado de dicha diferencia resultó ser de 1 320 segundos, Roëmer, mediante el siguiente cálculo cinemática sencillo,
obtuvo una primera medida del valor de la velocidad c de la luz en el vacío. El valor más preciso obtenido por este método es de 301 500 km/s.
ÓPTICA GEOMÉTRICA
La óptica geométrica se ocupa del estudio de los fenómenos ópticos que pueden estudiarse sin hacer referencia a la naturaleza de la luz.
Se basa en tres principios fundamentales que permiten desarrollar de forma puramente geométrica el estudio de la marcha de los rayos de luz a través de sistemas ópticos. Estos principios, admitidos por el hecho de que sus consecuencias vienen corroboradas por la experiencia, son los siguientes:
-La propagación de la luz es rectilínea.
-Los diversos rayos que forman un haz de luz son independientes entre sí.
-La trayectoria que sigue un rayo de luz entre dos puntos cualesquiera es tal que el tiempo empleado en recorrerla es máximo o mínimo respecto al tiempo necesario para recorrer otras trayectorias entre esos dos puntos (principio de Fermat).
El principio de Fermat implica, por ejemplo, que la luz se propaga en línea recta (lo que ya afirma el primer principio), puesto que la línea recta es la distancia más corta entre dos puntos A y B, y la luz debe viajar de A a B siguiendo una trayectoria tal que el tiempo que emplea en recorrerla sea menor que el que emplearía si siguiera cualquier otra. Asimismo, este principio implica la reversibilidad de las trayectorias, es decir que si un rayo incidente pasa en un momento dado por un punto P y, después de varias reflexiones y refracciones sucesivas, pasa por otro punto M, otro rayo incidente que pase por M en sentido contrario y en la misma dirección pasará luego también por P en sentido contrario que el primero.
Este campo de la óptica se ocupa de la aplicación de las leyes de reflexión y refracción de la luz al diseño de lentes y otros componentes de instrumentos ópticos.
Reflexión y refracción
Las leyes de reflexión y refracción de la luz suelen deducirse empleando la teoría ondulatoria de la luz introducida en el siglo XVII por el matemático, astrónomo y físico holandés Christiaan Huygens. El principio de Huygens afirma que todo punto de un frente de onda inicial puede considerarse como una fuente de ondas esféricas secundarias que se extienden en todas las direcciones con la misma velocidad, frecuencia y longitud de onda que el frente de onda del que proceden. Con ello puede definirse un nuevo frente de onda que envuelve las ondas secundarias. Como la luz avanza en ángulo recto a este frente de onda, el principio de Huygens puede emplearse para deducir los cambios de dirección de la luz.
Cuando las ondas secundarias llegan a otro medio u objeto, cada punto del límite entre los medios se convierte en una fuente de dos conjuntos de ondas. El conjunto reflejado vuelve al primer medio, y el conjunto refractado entra en el segundo medio. El comportamiento de los rayos reflejados y refractados puede explicarse por el principio de Huygens. Es más sencillo, y a veces suficiente, representar la propagación de la luz mediante rayos en vez de ondas. El rayo es la línea de avance, o dirección de propagación, de la energía radiante y, por tanto, perpendicular al frente de onda. En la óptica geométrica se prescinde de la teoría ondulatoria de la luz y se supone que la luz no se difracta. La trayectoria de los rayos a través de un sistema óptico se determina aplicando las leyes de reflexión y refracción.
Si un rayo de luz que se propaga a través de un medio homogéneo incide sobre la superficie de un segundo medio homogéneo, parte de la luz es reflejada y parte entra como rayo refractado en el segundo medio, donde puede o no ser absorbido. La cantidad de luz reflejada depende de la relación entre los índices de refracción de ambos medios. El plano de incidencia se define como el plano formado por el rayo incidente y la normal (es decir, la línea perpendicular a la superficie del medio) en el punto de incidencia (figura 1). El ángulo de incidencia es el ángulo entre el rayo incidente y la normal. Los ángulos de reflexión y refracción se definen de modo análogo.
Las leyes de la reflexión afirman que el ángulo de incidencia es igual al ángulo de reflexión, y que el rayo incidente, el rayo reflejado y la normal en el punto de incidencia se encuentran en un mismo plano. Si la superficie del segundo medio es lisa, puede actuar como un espejo y producir una imagen reflejada (figura 2). En la figura 2, la fuente de luz es el objeto A; un punto de A emite rayos en todas las direcciones. Los dos rayos que inciden sobre el espejo en B y C, por ejemplo, se reflejan como rayos BD y CE. Para un observador situado delante del espejo, esos rayos parecen venir del punto F que está detrás del espejo. De las leyes de reflexión se deduce que CF y BF forman el mismo ángulo con la superficie del espejo que AC y AB. En este caso, en el que el espejo es plano, la imagen del objeto parece situada detrás del espejo y separada de él por la misma distancia que hay entre éste y el objeto que está delante.
Si la superficie del segundo medio es rugosa, las normales a los distintos puntos de la superficie se encuentran en direcciones aleatorias. En ese caso, los rayos que se encuentren en el mismo plano al salir de una fuente puntual de luz tendrán un plano de incidencia, y por tanto de reflexión, aleatorio. Esto hace que se dispersen y no puedan formar una imagen.
La reflexión de la luz
Al igual que la reflexión de las ondas sonoras, la reflexión luminosa es un fenómeno en virtud del cual la luz al incidir sobre la superficie de los cuerpos cambia de dirección, invirtiéndose el sentido de su propagación. En cierto modo se podría comparar con el rebote que sufre una bola de billar cuando es lanzada contra una de las bandas de la mesa.
La visión de los objetos se lleva a cabo precisamente gracias al fenómeno de la reflexión. Un objeto cualquiera, a menos que no sea una fuente en sí mismo, permanecerá invisible en tanto no sea iluminado. Los rayos luminosos que provienen de la fuente se reflejan en la superficie del objeto y revelan al observador los detalles de su forma y su tamaño.
De acuerdo con las características de la superficie reflectora, la reflexión luminosa puede ser regular o difusa. La reflexión regular tiene lugar cuando la superficie es perfectamente lisa. Un espejo o una lámina metálica pulimentada reflejan ordenadamente un haz de rayos conservando la forma del haz. La reflexión difusa se da sobre los cuerpos de superficies más o menos rugosas.
En ellas un haz paralelo, al reflejarse, se dispersa orientándose los rayos en direcciones diferentes. Ésta es la razón por la que un espejo es capaz de reflejar la imagen de otro objeto en tanto que una piedra, por ejemplo, sólo refleja su propia imagen.
Sobre la base de las observaciones antiguas se establecieron las leyes que rigen el comportamiento de la luz en la reflexión regular o especular. Se denominan genéricamente leyes de la reflexión.
Si S es una superficie especular (representada por una línea recta rayada del lado en que no existe la reflexión), se denomina rayo incidente al que llega a S, rayo reflejado al que emerge de ella como resultado de la reflexión y punto de incidencia O al punto de corte del rayo incidente con la superficie S. La recta N, perpendicular a S por el punto de incidencia, se denomina normal.
El ángulo de incidencia ð es el formado por el rayo incidente y la normal. El ángulo de reflexión ð' es el que forma la normal y el rayo reflejado. Con la ayuda de estos conceptos auxiliares pueden anunciarse las leyes de la reflexión en los siguientes términos:
1.ª Ley. El rayo incidente, la normal y el rayo reflejado se encuentran sobre un mismo plano.
2.ª Ley. El ángulo de incidencia es igual al ángulo de reflexión (ð = ð').
La Velocidad y el índice de refracción
La velocidad con que la luz se propaga a través de un medio homogéneo y transparente es una constante característica de dicho medio, y por tanto, cambia de un medio a otro. En la antigüedad se pensaba que su valor era infinito, lo que explicaba su propagación instantánea.
Debido a su enorme magnitud la medida de la velocidad de la luz c ha requerido la invención de procedimientos ingeniosos que superarán el inconveniente que suponen las cortas distancias terrestres en relación con tan extraordinaria rapidez. Métodos astronómicos y métodos terrestres han ido dando resultados cada vez más próximos. En la actualidad se acepta para la velocidad de la luz en el vacío el valor c = 300 000 km/s. En cualquier medio material transparente la luz se propaga con una velocidad que es siempre inferior a c. Así, por ejemplo, en el agua lo hace a 225 000 km/s y en el vidrio a 195 000 km/s.
En óptica se suele comparar la velocidad de la luz en un medio transparente con la velocidad de la luz en el vacío, mediante el llamado índice de refracción absoluto n del medio: se define como el cociente entre la velocidad c de la luz en el vacío y la velocidad v de la luz en el medio, es decir:
Dado que c es siempre mayor que v, n resulta siempre mayor o igual que la unidad. Conforme se deduce de la propia definición cuanto mayor sea el índice de refracción absoluto de una sustancia tanto más lentamente viajará la luz por su interior.
Si lo que se pretende es comparar las velocidades v1 y v2 de dos medios diferentes se define entonces el índice de refracción relativo del medio 1 respecto del 2 como cociente entre ambas:
o en términos de índices de refracción absolutos,
Un índice de refracción relativo n12 menor que 1 indica que en el segundo medio la luz se mueve más rápidamente que en el primero.
refracción de la luz
Se denomina refracción luminosa al cambio que experimenta la dirección de propagación de la luz cuando atraviesa oblicuamente la superficie de separación de dos medios transparentes de distinta naturaleza. Las lentes, las máquinas fotográficas, el ojo humano y, en general, la mayor parte de los instrumentos ópticos basan su funcionamiento en este fenómeno óptico.
El fenómeno de la refracción va, en general, acompañado de una reflexión, más o menos débil, producida en la superficie que limita los dos medios transparentes. El haz, al llegar a esa superficie límite, en parte se refleja y en parte se refracta, lo cual implica que los haces reflejado y refractado tendrán menos intensidad luminosa que el rayo incidente. Dicho reparto de intensidad se produce en una proporción que depende de las características de los medios en contacto y del ángulo de incidencia respecto de la superficie límite. A pesar de esta circunstancia, es posible fijar la atención únicamente en el fenómeno de la refracción para analizar sus características.
Las leyes de la refracción
Al igual que las leyes de la reflexión, las de la refracción poseen un fundamento experimental. Junto con los conceptos de rayo incidente, normal y ángulo de incidencia, es necesario considerar ahora el rayo refractado y el ángulo de refracción o ángulo que forma la normal y el rayo refractado.
Sean 1 y 2 dos medios transparentes en contacto que son atravesados por un rayo luminoso en el sentido de 1 a 2 y ð1 y ð2 los ángulos de incidencia y refracción respectivamente. Las leyes que rigen el fenómeno de la refracción pueden, entonces, expresarse en la forma:
1.ª Ley. El rayo incidente, la normal y el rayo refractado se encuentran en el mismo plano.
2.ª Ley. (ley de Snell) Esta importante ley, llamada así en honor del matemático holandés Willebrord van Roijen Snell, afirma que el producto del índice de refracción del primer medio y el seno del ángulo de incidencia de un rayo es igual al producto del índice de refracción del segundo medio y el seno del ángulo de refracción. El rayo incidente, el rayo refractado y la normal a la superficie de separación de los medios en el punto de incidencia están en un mismo plano. En general, el índice de refracción de una sustancia transparente más densa es mayor que el de un material menos denso, es decir, la velocidad de la luz es menor en la sustancia de mayor densidad. Por tanto, si un rayo incide de forma oblicua sobre un medio con un índice de refracción mayor, se desviará hacia la normal, mientras que si incide sobre un medio con un índice de refracción menor, se desviará alejándose de ella. Los rayos que inciden en la dirección de la normal son reflejados y refractados en esa misma dirección.
Así, los senos de los ángulos de incidencia ð1 y de refracción ð2 son directamente proporcionales a las velocidades de propagación v1 y v2 de la luz en los respectivos medios.
Recordando que índice de refracción y velocidad son inversamente proporcionales (ecuación 14.1) la segunda ley de la refracción se puede escribir en función de los índices de refracción en la forma:
o en otros términos: n1 · sen ð1 = n2 · sen ð2 = cte (14.5)
Esto indica que el producto del seno del ángulo ð por el índice de refracción del medio correspondiente es una cantidad constante y, por tanto, los valores de n y sen ð para un mismo medio son inversamente proporcionales.
Debido a que la función trigonométrica seno es creciente para ángulos menores de 90º, de la última ecuación (14.5) se deduce que si el índice de refracción ni del primer medio es mayor que el del segundo n2, el ángulo de refracción ð2 es mayor que el de incidencia ð1 y, por tanto, el rayo refractado se aleja de la normal.
Por el contrario, si el índice de refracción n1 del primer medio es menor que el del segundo n2, el ángulo de refracción ð2 es menor que el de incidencia el y el rayo refractado se acerca a la normal.
Estas reglas prácticas que se deducen de la ecuación (14.5) son de mucha utilidad en la representación de la marcha de los rayos, operación imprescindible en el estudio de cualquier fenómeno óptico desde la perspectiva de la óptica geométrica.
La refringencia de un medio transparente viene medida por su índice de refracción. Los medios más refringentes son aquellos en los que la luz se propaga a menor velocidad; se dice también que tienen una mayor densidad óptica. Por regla general, la refringencia de un medio va ligada a su densidad de materia, pues la luz encontrará más dificultades para propagarse cuanta mayor cantidad de materia haya de atravesar para una misma distancia. Así pues, a mayor densidad, menor velocidad y mayor índice de refracción o grado de refringencia.
Para un observador situado en un medio menos denso, como el aire, un objeto situado en un medio más denso parece estar más cerca de la superficie de separación de lo que está en realidad. Un ejemplo habitual es el de un objeto sumergido, observado desde encima del agua, como se muestra en la figura 3 (sólo se representan rayos oblicuos para ilustrar el fenómeno con más claridad). El rayo DB procedente del punto D del objeto se desvía alejándose de la normal, hacia el punto A. Por ello, el objeto parece situado en C, donde la línea ABC intersecta una línea perpendicular a la superficie del agua y que pasa por D.
En la figura 4 se muestra la trayectoria de un rayo de luz que atraviesa varios medios con superficies de separación paralelas. El índice de refracción del agua es más bajo que el del vidrio. Como el índice de refracción del primer y el último medio es el mismo, el rayo emerge en dirección paralela al rayo incidente AB, pero resulta desplazado.
APLICACIÓN DE LA LEY DE SNELL
Cálculo de la velocidad de la luz en un medio
Un haz luminoso incide sobre la superficie de un medio cristalino en contacto con el aire formando un ángulo de 30º con la normal a la superficie. Si el ángulo de refracción resultante es de 22º, ¿cuál es la velocidad de la luz en ese medio? (velocidad de la luz en el vacío c = 3 · 108 m/s).
De acuerdo con la ley de Snell: n1 · sen ð1 = n2 · sen ð2 o en función de las velocidades:
En este caso el medio 1 es el aire y, por tanto, v1 c, de modo que
Prismas
Cuando la luz atraviesa un prisma —un objeto transparente con superficies planas y pulidas no paralelas—, el rayo de salida ya no es paralelo al rayo incidente. Como el índice de refracción de una sustancia varía según la longitud de onda, un prisma puede separar las diferentes longitudes de onda contenidas en un haz incidente y formar un espectro. En la figura 5, el ángulo CBD entre la trayectoria del rayo incidente y la trayectoria del rayo emergente es el ángulo de desviación. Puede demostrarse que cuando el ángulo de incidencia es igual al ángulo formado por el rayo emergente, la desviación es mínima. El índice de refracción de un prisma puede calcularse midiendo el ángulo de desviación mínima y el ángulo que forman las caras del prisma.
Leyes del prisma
ÁNGULO LÍMITE Y REFLEXIÓN TOTAL
Puesto que los rayos se alejan de la normal cuando entran en un medio menos denso, y la desviación de la normal aumenta a medida que aumenta el ángulo de incidencia, hay un determinado ángulo de incidencia, denominado ángulo crítico, para el que el rayo refractado forma un ángulo de 90º con la normal, por lo que avanza justo a lo largo de la superficie de separación entre ambos medios. Si el ángulo de incidencia se hace mayor que el ángulo crítico, los rayos de luz serán totalmente reflejados. La reflexión total no puede producirse cuando la luz pasa de un medio menos denso a otro más denso. Las tres ilustraciones de la figura 6 muestran la refracción ordinaria, la refracción en el ángulo crítico y la reflexión total.
La fibra óptica es una nueva aplicación práctica de la reflexión total. Cuando la luz entra por un extremo de un tubo macizo de vidrio o plástico, puede verse reflejada totalmente en la superficie exterior del tubo y, después de una serie de reflexiones totales sucesivas, salir por el otro extremo. Es posible fabricar fibras de vidrio de diámetro muy pequeño, recubrirlas con un material de índice de refracción menor y juntarlas en haces flexibles o placas rígidas que se utilizan para transmitir imágenes. Los haces flexibles, que pueden emplearse para iluminar además de para transmitir imágenes, son muy útiles para la exploración médica, ya que pueden introducirse en cavidades estrechas e incluso en vasos sanguíneos.
Cuando un haz luminoso alcanza la superficie de separación de dos medios transparentes, en parte refracta y en parte se refleja. Si el sentido de la propagación es del medio más refringente al medio menos refringente, el rayo refractado, de acuerdo con la ley de Snell, se alejará de la normal. Eso implica que si se aumenta progresivamente el ángulo de incidencia, el rayo refractado se desviará cada vez más de la normal, aproximándose a la superficie límite hasta coincidir con ella. El valor del ángulo de incidencia que da lugar a este tipo de refracción recibe el nombre de ángulo límite ðL.
La determinación del ángulo límite ðL puede hacerse a partir de la ley de Snell. Dado que el ángulo de refracción que corresponde al ángulo límite vale 90º, se tendrá:
n1 sen ðL = n2 sen 90º = n2 ; sen ðL = (n2/n1) ðL = arcsen (n2/n1)
La expresión anterior pone de manifiesto que sólo cuando n2 sea menor que n1 tiene sentido hablar ángulo límite, de lo contrario (n2 > n1) el cociente n2/n1 sería mayor que la unidad, con lo que ðL no podría definirse, ya que el seno de un ángulo no puede ser mayor que uno.
Para ángulos de incidencias superiores al ángulo límite no hay refracción, sino sólo reflexión, y el fenómeno se conoce como reflexión interna total. También la reflexión total puede ser explicada a partir de la ley de Snell, Puesto que sen
ð2
1, la segunda ley de la refracción se podrá escribir en la forma:
o lo que es lo mismo:
pero n2/n1 es precisamente sen ðL y, por tanto: sen ð1
sen ðL, lo que supone que ð2
ðL
o en otros términos, la ley de Snell sólo se satisface, si n2 es mayor que n1, para ángulos de incidencia el menores o iguales al ángulo límite. Para ángulos de incidencia mayores, la refracción no es posible y se produce la reflexión interna total.
Superficies esféricas y asféricas
La mayor parte de la terminología tradicional de la óptica geométrica se desarrolló en relación con superficies esféricas de reflexión y refracción. Sin embargo, a veces se consideran superficies no esféricas o asféricas. El eje óptico es una línea de referencia que constituye un eje de simetría, y pasa por el centro de una lente o espejo esféricos y por su centro de curvatura. Si un haz de rayos estrecho que se propaga en la dirección del eje óptico incide sobre la superficie esférica de un espejo o una lente delgada, los rayos se reflejan o refractan de forma que se cortan, o parecen cortarse, en un punto situado sobre el eje óptico. La distancia entre ese punto (llamado foco) y el espejo o lente se denomina distancia focal. Cuando una lente es gruesa, los cálculos se realizan refiriéndolos a unos planos denominados planos principales, y no a la superficie real de la lente. Si las dos superficies de una lente no son iguales, ésta puede tener dos distancias focales, según cuál sea la superficie sobre la que incide la luz. Cuando un objeto está situado en el foco, los rayos que salen de él serán paralelos al eje óptico después de ser reflejados o refractados. Si una lente o espejo hace converger los rayos de forma que se corten delante de dicha lente o espejo, la imagen será real e invertida. Si los rayos divergen después de la reflexión o refracción de modo que parecen venir de un punto por el que no han pasado realmente, la imagen no está invertida y se denomina imagen virtual. La relación entre la altura de la imagen y la altura del objeto se denomina aumento lateral.
Si se consideran positivas las distancias medidas desde una lente o espejo en el sentido en que se desplaza la luz, y negativas las medidas en sentido opuesto, entonces, siendo u la distancia del objeto, v la distancia de la imagen y f la distancia focal de un espejo o una lente delgada, los espejos esféricos cumplen la ecuación
1/v + 1/u = 1/f
y las lentes esféricas la ecuación: 1/v - 1/u = 1/f
Si una lente simple tiene superficies de radios r1 y r2 y la relación entre su índice de refracción y el del medio que la rodea es n, se cumple que: 1/f = (n - 1) (1/r1 - 1/r2)
La distancia focal de un espejo esférico es igual a la mitad de su radio de curvatura. Como se indica en la figura 7, los rayos que se desplazan en un haz estrecho en la dirección del eje óptico e inciden sobre un espejo cóncavo cuyo centro de curvatura está situado en C, se reflejan de modo que se cortan en B, a media distancia entre A y C. Si la distancia del objeto es mayor que la distancia AC, la imagen es real, reducida e invertida. Si el objeto se encuentra entre el centro de curvatura y el foco, la imagen es real, aumentada e invertida. Si el objeto está situado entre la superficie del espejo y su foco, la imagen es virtual, aumentada y no invertida. Un espejo convexo sólo forma imágenes virtuales, reducidas y no invertidas, a no ser que se utilice junto con otros componentes ópticos.
OBJETOS E IMÁGENES
En ocasiones los rayos de luz que, procedentes de un objeto, alcanzan el ojo humano y forman una imagen en él, han sufrido transformaciones intermedias debidas a fenómenos ópticos tales como la reflexión o la refracción. Todos los aparatos ópticos, desde el más sencillo espejo plano al más complicado telescopio, proporcionan imágenes más o menos modificadas de los objetos.
La determinación de las relaciones existentes entre un objeto y su imagen correspondiente, obtenida a través de cualquiera de estos elementos o sistemas ópticos, es uno de los propósitos de la óptica geométrica. Su análisis riguroso se efectúa, en forma matemática, manejando convenientemente el carácter rectilíneo de la propagación luminosa junto con las leyes de la reflexión y de la refracción. Pero también es posible efectuar un estudio gráfico de carácter práctico utilizando diagramas de rayos, los cuales representan la marcha de los rayos luminosos a través del espacio que separa el objeto de la imagen.
Espejos
Formación de imágenes en espejos planos: conforme se deduce de las leyes de la reflexión, la imagen P' de un punto objeto P respecto de un espejo plano S' estará situada al otro lado de la superficie reflectora a igual distancia de ella que el punto objeto P. Además la línea que une el punto objeto P con su imagen P' es perpendicular al espejo. Es decir, P y P' son simétricos respecto de S; si se repite este procedimiento de construcción para cualquier objeto punto por punto, se tiene la imagen simétrica del objeto respecto del plano del espejo.
Dicha imagen está formada, no por los propios rayos, sino por sus prolongaciones. En casos como éste se dice que la imagen es virtual. Sin embargo, la reflexión en el espejo plano no invierte la posición del objeto. Se trata entonces de una imagen directa. En resumen, la imagen formada en un espejo plano es virtual, directa y de igual tamaño que el objeto.
Formación de imágenes en espejos esféricos: Los espejos esféricos tienen la forma de la superficie que resulta cuando una esfera es cortada por un plano. Si la superficie reflectora está situada en la cara interior de la esfera se dice que el espejo es cóncavo. Si está situada en la cara exterior se denomina convexo. Las características ópticas fundamentales de todo espejo esférico son las siguientes:
Centro de curvatura C: Es el centro de la superficie esférica que constituye el espejo.
Radio de curvatura R: Es el radio de dicha superficie.
Vértice V: Coincide con el centro del espejo.
Eje principal: Es la recta que une el centro de curvatura C con el vértice V.
Foco: Es un punto del eje por el que pasan o donde convergen todos los rayos reflejados que inciden paralelamente al eje. En los espejos esféricos se encuentra en el punto medio entre el centro de curvatura y el vértice.
Cuando un rayo incidente pasa por el centro de curvatura, el rayo reflejado recorre el mismo camino, pero en sentido inverso debido a que la incidencia es normal o perpendicular.
Asimismo, cuando un rayo incide paralelamente al eje, el rayo reflejado pasa por el foco, y, viceversa, si el rayo incidente pasa por el foco el reflejado marcha paralelamente al eje. Es ésta una propiedad fundamental de los rayos luminosos que se conoce como reversibilidad.
Con estas reglas, que son consecuencia inmediata de las leyes de la reflexión, es posible construir la imagen de un objeto situado sobre el eje principal cualquiera que sea su posición. Basta trazar dos rayos incidentes que, emergiendo del extremo superior del objeto discurran uno paralelamente al eje y el otro pasando por el centro de curvatura C; el extremo superior del objeto vendrá determinado por el punto en el que ambos rayos convergen. Cuando la imagen se forma de la convergencia de los rayos y no de sus prolongaciones se dice que la imagen es real.
En la construcción de imágenes en espejos cóncavos y según sea la posición del objeto, se pueden plantear tres situaciones diferentes que pueden ser analizadas mediante diagramas de rayos:
a) El objeto está situado respecto del eje más allá del centro de curvatura C. En tal caso la imagen formada es real, invertida y de menor tamaño que el objeto.
b) El objeto está situado entre el centro de curvatura C y el foco F. La imagen resulta entonces real, invertida y de mayor tamaño que el objeto.
c) El objeto está situado entre el foco F y el vértice V. El resultado es una imagen virtual, directa y de mayor tamaño que el objeto.
Para espejos convexos sucede que cualquiera que fuere la distancia del objeto al vértice del espejo la imagen es virtual, directa y de mayor tamaño. Dicho resultado puede comprobarse efectuando la construcción de imágenes mediante diagramas de rayos de acuerdo con los criterios anteriormente expuestos.
Láminas y prismas
La luz en las láminas. Cuando la luz atraviesa una lámina de material transparente el rayo principal sufre dos refracciones, pues encuentra en su camino dos superficies de separación diferentes. El estudio de la marcha de los rayos cuando la lámina es de caras planas y paralelas, resulta especialmente sencillo y permite familiarizarse de forma práctica con el fenómeno de la refracción luminosa.
En una lámina de vidrio de estas características las normales N y N' a las superficies límites S y S' son también paralelas, por lo que el ángulo de refracción respecto de la primera superficie coincidirá con el de incidencia respecto de la segunda. Si además la lámina está sumergida en un mismo medio como puede ser el aire, éste estará presente a ambos lados de la lámina, de modo que la relación entre los índices de refracción aire-vidrio para la primera refracción será inversa de la correspondiente a la segunda refracción vidrio-aire.
Eso significa que, de acuerdo con la ley de Snell, el rayo refractado en la segunda superficie S' se desviará respecto del incidente alejándose de la normal N' en la misma medida en que el rayo refractado en la superficie S se desvíe respecto de su incidente, en este caso acercándose a la normal.
Esta equivalencia en la magnitud de desviaciones de signo opuesto hace que el rayo que incide en la lámina y el rayo que emerge de ella sean paralelos, siempre que los medios a uno y otro lado sean idénticos. En tal circunstancia las láminas plano-paralelas no modifican la orientación de los rayos que inciden sobre ellas, tan sólo los desplazan.
El prisma óptico. Un prisma óptico es, en esencia, un cuerpo transparente limitado por dos superficies planas no paralelas. El estudio de la marcha de los rayos en un prisma óptico es semejante al realizado para láminas paralelas, sólo que algo más complicado por el hecho de que al estar ambas caras orientadas según un ángulo, las normales correspondientes no son paralelas y el rayo emergente se desvía respecto del incidente.
El prisma óptico fue utilizado sistemáticamente por Isaac Newton en la construcción de su teoría de los colores, según la cual la luz blanca es la superposición de luz de siete colores diferentes, rojo, anaranjado, amarillo, verde, azul, añil y violeta. Experimentos concienzudos realizados con rayos de luz solar y prismas ópticos permitieron a Newton llegar no sólo a demostrar el carácter compuesto de la luz blanca, sino a explicar el fenómeno de la dispersión cromática óptica.
Desde Newton, se sabe que el prisma presenta un grado de refringencia o índice de refracción distinto para cada componente de la luz blanca, por lo que cada color viaja dentro del prisma a diferente velocidad. Ello da lugar, según la ley de Snell, a desviaciones de diferente magnitud de cada uno de los componentes que inciden en el prisma en forma de luz blanca y emergen de él ya descompuestos formando los llamados colores del arco iris. Estas diferentes clases de luz definen la gama conocida como espectro visible.
APLICACIÓN DE LA LEY DE SNELL A LÁMINAS PLANO-PARALEAS
Un acuario en forma de cubo de 1,5 m de longitud está lleno de agua. Sobre un extremo del mismo incide un haz de luz bajo un ángulo de 25º con respecto a la horizontal. Despreciando el efecto de las paredes de vidrio, calcular el desplazamiento lateral que experimenta el haz emergente respecto del incidente (nagua = 1,33).
En la resolución de cualquier problema de óptica geométrica es esencial representar, de forma aproximada pero correcta, la marcha de los rayos. En este caso, y si se desprecia el efecto del vidrio, el haz de luz sufre dos refracciones, una en la superficie aire-agua y otra en la superficie agua-aire. Debido a que se trata de una lámina de caras plano-paralelas y que el modo a ambos lados es el mismo, el efecto desviador de la primera refracción será compensado por el de la segunda, de signo opuesto y el rayo emergente será paralelo al incidente. La desviación entre ambos podrá escribirse en la forma de relación trigonométrica como:
siendo a su vez
es decir,
pero de acuerdo con la figura:
por tanto,
ð1 es conocido e igual a 90º - 25º, ð2 se puede calcular aplicando la ley de Snell y es el lado del cubo igual a 1,5 m. De modo que:
Lentes
Las lentes son objetos transparentes, limitados por dos superficies esféricas o por una superficie esférica y otra plana, que se hallan sumergidas en un medio, asimismo transparente, normalmente aire. Desempeñan un papel esencial como componentes de diferentes aparatos ópticos. Con lentes se corrigen los diferentes defectos visuales, se fabrican los microscopios, las máquinas fotográficas, los proyectores y muchos otros instrumentos ópticos.
Tipos de lentes
De la combinación de los tres posibles tipos de superficies límites, cóncava, convexa y plana, resultan las diferentes clases de lentes. Según su geometría, las lentes pueden ser bicóncavas, biconvexas, plano-cóncavas, plano convexas y cóncavo-convexas.
Desde el punto de vista de sus efectos sobre la marcha de los rayos es posible agrupar los diferentes tipos de lentes en dos grandes categorías: lentes convergentes y lentes divergentes. Las lentes convergentes se caracterizan porque hacen converger, en un punto denominado foco, cualquier haz de rayos paralelos que incidan sobre ellas. En cuanto a su forma, todas ellas son más gruesas en la zona central que en los bordes. Las lentes divergentes, por su parte, separan o hacen divergir los rayos de cualquier haz paralelo que incida sobre ellas, siendo las prolongaciones de los rayos emergentes las que confluyen en el foco. Al contrario que las anteriores, las lentes divergentes son menos gruesas en la zona central que en los bordes.
Formación de imágenes. Para estudiar la formación de imágenes por lentes, es necesario mencionar algunas de las características que permiten describir de forma sencilla la marcha de los rayos.
Plano óptico. Es el plano central de la lente.
Centro óptico O. Es el centro geométrico de la lente. Tiene la propiedad de que todo rayo que pasa por él no sufre desviación alguna.
Eje principal. Es la recta que pasa por el centro óptico y es perpendicular al plano óptico.
Focos principales F y F' (foco objeto y foco imagen, respectivamente). Son un par de puntos, correspondientes uno a cada superficie, en donde se cruzan los rayos (o sus prolongaciones) que inciden sobre la lente paralelamente al eje principal.
Distancia focal f. Es la distancia entre el centro óptico O y el foco F.
Lentes convergentes. Para proceder a la construcción de imágenes debidas a lentes convergentes, se deben tener presente las siguientes reglas:
Cuando un rayo incide sobre la lente paralelamente al eje, el rayo emergente pasa por el foco imagen F'. Inversamente, cuando un rayo incidente pasa por el foco objeto F, el rayo emergente discurre paralelamente al eje. Finalmente, cualquier rayo que se dirija a la lente pasando por el centro óptico se refracta sin sufrir ninguna desviación.
Cuando se aplican estas reglas sencillas para determinar la imagen de un objeto por una lente convergente, se obtienen los siguientes resultados:
- Si el objeto está situado respecto del plano óptico a una distancia superior a dos veces la distancia focal, 2 f = 2 FO, la imagen es real, invertida y de menor tamaño.
- Si el objeto está situado a una distancia del plano óptico igual a 2f, la imagen es real, invertida y de igual tamaño.
- Si el objeto está situado a una distancia del plano óptico comprendida entre 2f y f, la imagen es real, invertida y de mayor tamaño.
- Si el objeto está situado a una distancia del plano óptico inferior a f, la imagen es virtual, directa y de mayor tamaño.
Lentes divergentes. La construcción de imágenes formadas por lentes divergentes se lleva a cabo de forma semejante, teniendo en cuenta que cuando un rayo incide sobre la lente paralelamente al eje, es la prolongación del rayo emergente la que pasa por el foco objeto F. Asimismo, cuando un rayo incidente se dirige hacia el foco imagen F' de modo que su prolongación pase por él, el rayo emergente discurre paralelamente al eje. Finalmente y al igual que sucede en las lentes convergentes, cualquier rayo que se dirija a la lente pasando por el centro óptico se refracta sin sufrir desviación.
Aunque para lentes divergentes se tiene siempre que la imagen resultante es virtual, directa y de menor tamaño, la aplicación de estas reglas permite obtener fácilmente la imagen de un objeto situado a cualquier distancia de la lente.
Si la distancia del objeto es mayor que la distancia focal, una lente convergente forma una imagen real e invertida. Si el objeto está lo bastante alejado, la imagen será más pequeña que el objeto. Si la distancia del objeto es menor que la distancia focal de la lente, la imagen será virtual, mayor que el objeto y no invertida. En ese caso, el observador estará utilizando la lente como una lupa o microscopio simple. El ángulo que forma en el ojo esta imagen virtual aumentada (es decir, su dimensión angular aparente) es mayor que el ángulo que formaría el objeto si se encontrara a la distancia normal de visión. La relación de estos dos ángulos es la potencia de aumento de la lente. Una lente con una distancia focal más corta crearía una imagen virtual que formaría un ángulo mayor, por lo que su potencia de aumento sería mayor. La potencia de aumento de un sistema óptico indica cuánto parece acercar el objeto al ojo, y es diferente del aumento lateral de una cámara o telescopio, por ejemplo, donde la relación entre las dimensiones reales de la imagen real y las del objeto aumenta según aumenta la distancia focal.
Lente convexa. Una lente convexa es más gruesa en el centro que en los extremos. La luz que atraviesa una lente convexa se desvía hacia dentro (converge). Esto hace que se forme una imagen del objeto en una pantalla situada al otro lado de la lente. La imagen está enfocada si la pantalla se coloca a una distancia determinada, que depende de la distancia del objeto y del foco de la lente. La lente del ojo humano es convexa, y además puede cambiar de forma para enfocar objetos a distintas distancias. La lente se hace más gruesa al mirar objetos cercanos y más delgada al mirar objetos lejanos. A veces, los músculos del ojo no pueden enfocar la luz sobre la retina, la pantalla del globo ocular. Si la imagen de los objetos cercanos se forma detrás de la retina, se dice que existe hipermetropía.
Lente cóncava. Las lentes cóncavas están curvadas hacia dentro. La luz que atraviesa una lente cóncava se desvía hacia fuera (diverge). A diferencia de las lentes convexas, que producen imágenes reales, las cóncavas sólo producen imágenes virtuales, es decir, imágenes de las que parecen proceder los rayos de luz. En este caso es una imagen más pequeña situada delante del objeto (el trébol). En las gafas o anteojos para miopes, las lentes cóncavas hacen que los ojos formen una imagen nítida en la retina y no delante de ella.
La cantidad de luz que puede admitir una lente aumenta con su diámetro. Como la superficie que ocupa una imagen es proporcional al cuadrado de la distancia focal de la lente, la intensidad luminosa de la superficie de la imagen es directamente proporcional al diámetro de la lente e inversamente proporcional al cuadrado de la distancia focal. Por ejemplo, la imagen producida por una lente de 3 cm de diámetro y una distancia focal de 20 cm sería cuatro veces menos luminosa que la formada por una lente del mismo diámetro con una distancia focal de 10 cm. La relación entre la distancia focal y el diámetro efectivo de una lente es su relación focal, llamada también número f. Su inversa se conoce como abertura relativa. Dos lentes con la misma abertura relativa tienen la misma luminosidad, independientemente de sus diámetros y distancias focales.
Lupa. Una lupa es una lente convexa grande empleada para examinar objetos pequeños. La lente desvía la luz incidente de modo que se forma una imagen virtual ampliada del objeto (en este caso un hongo) por detrás del mismo. La imagen se llama virtual porque los rayos que parecen venir de ella no pasan realmente por ella. Una imagen virtual no se puede proyectar en una pantalla.
Aberración
La óptica geométrica predice que la imagen de un punto formada por elementos ópticos esféricos no es un punto perfecto, sino una pequeña mancha. Las partes exteriores de una superficie esférica tienen una distancia focal distinta a la de la zona central, y este defecto hace que la imagen de un punto sea un pequeño círculo. La diferencia en distancia focal entre las distintas partes de la sección esférica se denomina aberración esférica. Si la superficie de una lente o espejo, en lugar de ser una parte de una esfera es una sección de un paraboloide de revolución, los rayos paralelos que inciden en cualquier zona de la superficie se concentran en un único punto, sin aberración esférica. Mediante combinaciones de lentes convexas y cóncavas puede corregirse la aberración esférica, pero este defecto no puede eliminarse con una única lente esférica para un objeto e imagen reales.
El fenómeno que consiste en un aumento lateral distinto para los puntos del objeto no situados en el eje óptico se denomina coma. Cuando hay coma, la luz procedente de un punto forma una familia de círculos situados dentro de un cono, y en un plano perpendicular al eje óptico la imagen adquiere forma de gota. Escogiendo adecuadamente las superficies puede eliminarse la coma para un determinado par de puntos objeto-imagen, pero no para todos los puntos. Los puntos del objeto y la imagen correspondientes entre sí (o conjugados) para los que no existe aberración esférica ni coma se denominan puntos aplanáticos, y una lente para la que existe dicho par de puntos se denomina lente aplanática.
El astigmatismo es un defecto por el que la luz procedente de un punto del objeto situado fuera del eje se esparce en la dirección del eje óptico. Si el objeto es una línea vertical, la sección transversal del haz refractado es una elipse; a medida que se aleja uno de la lente, la elipse se transforma primero en una línea horizontal, luego vuelve a expandirse y posteriormente pasa a ser una línea vertical. Si en un objeto plano, la superficie de mejor enfoque está curvada, se habla de `curvatura de imagen'. La `distorsión' se debe a una variación del aumento con la distancia axial, y no a una falta de nitidez de la imagen.
Como el índice de refracción varía con la longitud de onda, la distancia focal de una lente también varía, y produce una `aberración cromática' axial o longitudinal. Cada longitud de onda forma una imagen de tamaño ligeramente diferente; esto produce lo que se conoce por aberración cromática lateral. Mediante combinaciones (denominadas acromáticas) de lentes convergentes y divergentes fabricadas con vidrios de distinta dispersión es posible minimizar la aberración cromática. Los espejos están libres de este defecto. En general, en las lentes acromáticas se corrige la aberración cromática para dos o tres colores determinados.
ÓPTICA FÍSICA
Esta rama de la óptica se ocupa de aspectos del comportamiento de la luz tales como su emisión, composición o absorción, así como de la polarización, la interferencia y la difracción.
Polarización de la luz
Los átomos de una fuente de luz ordinaria emiten pulsos de radiación de duración muy corta. Cada pulso procedente de un único átomo es un tren de ondas prácticamente monocromático (con una única longitud de onda). El vector eléctrico correspondiente a esa onda no gira en torno a la dirección de propagación de la onda, sino que mantiene el mismo ángulo, o acimut, respecto a dicha dirección. El ángulo inicial puede tener cualquier valor. Cuando hay un número elevado de átomos emitiendo luz, los ángulos están distribuidos de forma aleatoria, las propiedades del haz de luz son las mismas en todas direcciones, y se dice que la luz no está polarizada. Si los vectores eléctricos de todas las ondas tienen el mismo ángulo acimutal (lo que significa que todas las ondas transversales están en el mismo plano), se dice que la luz está polarizada en un plano, o polarizada linealmente.
La luz polarizada está formada por fotones individuales cuyos vectores de campo eléctrico están todos alineados en la misma dirección. La luz normal es no polarizada, porque los fotones se emiten de forma aleatoria, mientras que la luz láser es polarizada porque los fotones se emiten coherentemente. Cuando la luz atraviesa un filtro polarizador, el campo eléctrico interactúa más intensamente con las moléculas orientadas en una determinada dirección. Esto hace que el haz incidente se divida en dos haces con vectores eléctricos perpendiculares entre sí. Un filtro horizontal absorbe los fotones con vector eléctrico vertical (como se muestra en la ilustración). Un segundo filtro girado 90° respecto al primero absorbe el resto de los fotones; si el ángulo es diferente sólo se absorbe una parte de la luz.
Cualquier onda electromagnética puede considerarse como la suma de dos conjuntos de ondas: uno en el que el vector eléctrico vibra formando ángulo recto con el plano de incidencia y otro en el que vibra de forma paralela a dicho plano. Entre las vibraciones de ambas componentes puede existir una diferencia de fase, que puede permanecer constante o variar de forma constante. Cuando la luz está linealmente polarizada, por ejemplo, esta diferencia de fase se hace 0 o 180°. Si la relación de fase es aleatoria, pero una de las componentes es más intensa que la otra, la luz está en parte polarizada. Cuando la luz es dispersada por partículas de polvo, por ejemplo, la luz que se dispersa en un ángulo de 90°. Con la trayectoria original del haz está polarizada en un plano, lo que explica por qué la luz procedente del cenit está marcadamente polarizada.
Para ángulos de incidencia distintos de 0 o 90°, la proporción de luz reflejada en el límite entre dos medios no es igual para ambas componentes de la luz. La componente que vibra de forma paralela al plano de incidencia resulta menos reflejada. Cuando la luz incide sobre un medio no absorbente con el denominado ángulo de Brewster, llamado así en honor al físico británico del siglo XIX David Brewster, la parte reflejada de la componente que vibra de forma paralela al plano de incidencia se hace nula. Con ese ángulo de incidencia, el rayo reflejado es perpendicular al rayo refractado; la tangente de dicho ángulo de incidencia es igual al cociente entre los índices de refracción del segundo medio y el primero.
Algunas sustancias son anisótropas, es decir, muestran propiedades distintas según la dirección del eje a lo largo del cual se midan. En esos materiales, la velocidad de la luz depende de la dirección en que ésta se propaga a través de ellos. Algunos cristales son birrefringentes, es decir, presentan doble refracción. A no ser que la luz se propague de forma paralela a uno de los ejes de simetría del cristal (un eje óptico del cristal), la luz se separa en dos partes que avanzan con velocidades diferentes. Un cristal uniáxico tiene uno de estos ejes. La componente cuyo vector eléctrico vibra en un plano que contiene el eje óptico es el llamado rayo ordinario; su velocidad es la misma en todas las direcciones del cristal, y cumple la ley de refracción de Snell. La componente que vibra formando un ángulo recto con el plano que contiene el eje óptico constituye el rayo extraordinario, y la velocidad de este rayo depende de su dirección en el cristal. Si el rayo ordinario se propaga a mayor velocidad que el rayo extraordinario, la birrefringencia es positiva; en caso contrario la birrefringencia es negativa.
Cuando un cristal es biáxico, la velocidad depende de la dirección de propagación para todas las componentes. Se pueden cortar y tallar los materiales birrefringentes para introducir diferencias de fase específicas entre dos grupos de ondas polarizadas, para separarlos o para analizar el estado de polarización de cualquier luz incidente. Un polarizador sólo transmite una componente de la vibración, ya sea reflejando la otra mediante combinaciones de prismas adecuadamente tallados o absorbiéndola. El fenómeno por el que un material absorbe preferentemente una componente de la vibración se denomina dicroísmo. El material conocido como Polaroid presenta dicroísmo; está formado por numerosos cristales dicroicos de pequeño tamaño incrustados en plástico, con todos sus ejes orientados de forma paralela. Si la luz incidente es no polarizada, el Polaroid absorbe aproximadamente la mitad de la luz. Los reflejos de grandes superficies planas, como un lago o una carretera mojada, están compuestos por luz parcialmente polarizada, y un Polaroid con la orientación adecuada puede absorberlos en más de la mitad. Este es el principio de las gafas o anteojos de sol Polaroid.
Los llamados analizadores pueden ser físicamente idénticos a los polarizadores. Si se cruzan un polarizador y un analizador situados consecutivamente, de forma que el analizador esté orientado para permitir la transmisión de las vibraciones situadas en un plano perpendicular a las que transmite el polarizador, se bloqueará toda la luz procedente del polarizador.
Las sustancias `ópticamente activas' giran el plano de polarización de la luz linealmente polarizada. Un cristal de azúcar o una solución de azúcar, pueden ser ópticamente activos. Si se coloca una solución de azúcar entre un polarizador y un analizador cruzados tal como se ha descrito antes, parte de la luz puede atravesar el sistema. El ángulo que debe girarse el analizador para que no pase nada de luz permite conocer la concentración de la solución. El polarímetro se basa en este principio.
Algunas sustancias —como el vidrio y el plástico— que no presentan doble refracción en condiciones normales pueden hacerlo al ser sometidas a una tensión. Si estos materiales bajo tensión se sitúan entre un polarizador y un analizador, las zonas coloreadas claras y oscuras que aparecen proporcionan información sobre las tensiones. La tecnología de la fotoelasticidad se basa en la doble refracción producida por tensiones.
También puede introducirse birrefringencia en materiales normalmente homogéneos mediante campos magnéticos y eléctricos. Cuando se somete un líquido a un campo magnético fuerte, puede presentar doble refracción. Este fenómeno se conoce como efecto Kerr, en honor del físico británico del siglo XIX John Kerr. Si se coloca un material apropiado entre un polarizador y un analizador cruzados, puede transmitirse o no la luz según si el campo eléctrico en el material está conectado o desconectado. Este sistema puede actuar como un conmutador o modulador de luz extremadamente rápido.
Interferencia y difracción
EL EXPERIMENTO DE YOUNG
En su trabajo titulado «Esbozos de experimentos e investigaciones respecto al fondo y a la luz», Thomas Young describe su propio experimento de interferencias luminosas, conocido también como de las dos rendijas. Al igual que Newton, Young empleó la luz solar iluminando de forma controlada un cuarto oscuro.
Dispuso en su interior dos pantallas. Con la primera cubrió la ventana y en ella efectuó dos orificios que permitían el paso de la luz. Sobre la segunda recogía la luz proyectada. Modificando el tamaño de los orificios observó que si éstos eran grandes se formaban dos manchas luminosas y separadas en la segunda pantalla. Pero si los orificios eran suficientemente pequeños, las dos manchas de luz se extendían y sus mitades próximas se superponían una sobre la otra dando lugar a una serie de bandas brillantes separadas por otras oscuras.
Este fenómeno de interferencias luminosas podía ser explicado a partir de la teoría ondulatoria de la luz propuesta por Huygens. Cuando las ondas S y S' procedentes de los focos O y O' respectivamente, llegaban a la pantalla se superponían dando lugar a esa imagen compuesta observada por Young. Dicha superposición podía ser de dos tipos extremos, o bien los valles de la onda S coincidían con los valles de la onda S' (y análogamente para las crestas) o bien un valle de la onda S coincidía en la segunda pantalla con una cresta de la onda S' (y viceversa).
En el primer caso se produciría un refuerzo de la perturbación, lo que podría explicar la existencia de bandas brillantes en esa zona común; la interferencia luminosa habría sido constructiva. En el segundo se produciría una anulación mutua de las perturbaciones al estar dirigidas en sentidos opuestos; la interferencia habría sido destructivo dando lugar a esas zonas oscuras observadas experimentalmente.
La coincidencia o la oposición de las ondas al llegar a la segunda pantalla dependería de las diferencias de distancias entre el punto de confluencia y los focos O y O' respectivos, lo que explicaría que las bandas brillantes y oscuras se alternasen en la pantalla al desplazarnos desde el punto central equidistante de los dos orificios, hacia los extremos de la pantalla.
Cuando dos haces de luz se cruzan pueden interferir, lo que afecta a la distribución de intensidades resultante. La coherencia de dos haces expresa hasta qué punto están en fase sus ondas. Si la relación de fase cambia de forma rápida y aleatoria, los haces son incoherentes. Si dos trenes de ondas son coherentes y el máximo de una onda coincide con el máximo de otra, ambas ondas se combinan produciendo en ese punto una intensidad mayor que si los dos haces no fueran coherentes. Si son coherentes y el máximo de una onda coincide con el mínimo de la otra, ambas ondas se anularán entre sí parcial o totalmente, con lo que la intensidad disminuirá. Cuando las ondas son coherentes, puede formarse un diagrama de interferencia formado por franjas oscuras y claras. Para producir un diagrama de interferencia constante, ambos trenes de ondas deben estar polarizados en el mismo plano. Los átomos de una fuente de luz ordinaria irradian luz de forma independiente, por lo que una fuente extensa de luz suele emitir radiación incoherente. Para obtener luz coherente de una fuente así, se selecciona una parte reducida de la luz mediante un pequeño orificio o rendija. Si esta parte vuelve a separarse mediante una doble rendija, un doble espejo o un doble prisma y se hace que ambas partes recorran trayectorias de longitud ligeramente diferente antes de combinarlas de nuevo, se produce un diagrama de interferencias. Los dispositivos empleados para ello se denominan interferómetros; se utilizan para medir ángulos pequeños, como los diámetros aparentes de las estrellas, o distancias pequeñas, como las desviaciones de una superficie óptica respecto a la forma deseada. Las distancias se miden en relación a la longitud de onda de la luz empleada.
El primero en mostrar un diagrama de interferencias fue el físico británico Thomas Young, en el experimento ilustrado en la figura 8. Un haz de luz que había pasado previamente por un orificio, iluminaba una superficie opaca con dos orificios o rendijas. La luz que pasaba por ambas rendijas formaba un diagrama de franjas circulares sucesivamente claras y oscuras en una pantalla. En la ilustración están dibujadas las ondulaciones para mostrar que en puntos como A, C o E (intersección de dos líneas continuas), las ondas de ambas rendijas llegan en fase y se combinan aumentando la intensidad. En otros puntos, como B o D (intersección de una línea continua con una línea de puntos), las ondas están desfasadas 180° y se anulan mutuamente.
Las ondas de luz reflejadas por las dos superficies de una capa transparente extremadamente fina situada sobre una superficie lisa pueden interferir entre sí. Las irisaciones de una fina capa de aceite sobre el agua se deben a la interferencia, y demuestran la importancia del cociente entre el espesor de la capa y la longitud de onda de la luz. Puede emplearse una capa o varias capas de materiales diferentes para aumentar o disminuir la reflectividad de una superficie. Los separadores de haz dicroicos son conjuntos de capas de distintos materiales, cuyo espesor se fija de forma que una banda de longitudes de onda sea reflejada y otra sea transmitida. Un filtro interferencial construido con estas capas transmite una banda de longitudes de onda extremadamente estrecha y refleja el resto de las longitudes. La forma de la superficie de un elemento óptico puede comprobarse presionándolo contra un patrón y observando el diagrama de franjas que se forma debido a la capa delgada de aire que queda entre ambas superficies.
La luz que incide sobre el borde de un obstáculo es desviada, o difractada, y el obstáculo no genera una sombra geométrica nítida. Los puntos situados en el borde del obstáculo actúan como fuente de ondas coherentes, y se forma un diagrama de interferencias denominado diagrama de difracción. La forma del borde del obstáculo no se reproduce con exactitud, porque parte del frente de onda queda cortado.
Como la luz pasa por una abertura finita al atravesar una lente, siempre se forma un diagrama de difracción alrededor de la imagen de un objeto. Si el objeto es extremadamente pequeño, el diagrama de difracción aparece como una serie de círculos concéntricos claros y oscuros alrededor de un disco central, llamado disco de Airy en honor al astrónomo británico del siglo XIX George Biddell Airy. Esto ocurre incluso con una lente libre de aberraciones. Si dos partículas están tan próximas que los dos diagramas se solapan y los anillos brillantes de una de ellas coinciden con los anillos oscuros de la segunda, no es posible resolver (distinguir) ambas partículas. El físico alemán del siglo XIX Ernst Karl Abbe fue el primero en explicar la formación de imágenes en un microscopio con una teoría basada en la interferencia de los diagramas de difracción de los distintos puntos del objeto.
En óptica, el análisis de Fourier —llamado así en honor al matemático francés Joseph Fourier— permite representar un objeto como una suma de ondas sinusoidales sencillas, llamadas componentes. A veces se analizan los sistemas ópticos escogiendo un objeto cuyas componentes de Fourier se conocen y analizando las componentes de Fourier de la imagen. Estos procedimientos determinan la llamada función de transferencia óptica. En ocasiones, el empleo de este tipo de técnicas permite extraer información de imágenes de baja calidad. También se han aplicado teorías estadísticas al análisis de las imágenes formadas.
Una red de difracción está formada por varios miles de rendijas de igual anchura y separadas por espacios iguales (se consiguen rayando el vidrio o el metal con una punta de diamante finísima). Cada rendija produce un diagrama de difracción, y todos estos diagramas interfieren entre sí. Para cada longitud de onda se forma una franja brillante en un lugar distinto. Si se hace incidir luz blanca sobre la red, se forma un espectro continuo. En instrumentos como monocromadores, espectrógrafos o espectrofotómetros se emplean prismas y redes de difracción para proporcionar luz prácticamente monocromática o para analizar las longitudes de onda presentes en la luz incidente.
Emisión estimulada
Los átomos de una fuente de luz corriente —como una bombilla (foco) incandescente, una lámpara fluorescente o una lámpara de neón— producen luz por emisión espontánea, y la radiación que emiten es incoherente. Si un número suficiente de átomos absorben energía de manera que resultan excitados y acceden a estados de mayor energía en la forma adecuada, puede producirse la emisión estimulada. La luz de una determinada longitud de onda puede provocar la producción de más luz con la misma fase y dirección que la onda original, por lo que la radiación será coherente. La emisión estimulada amplifica la radiación con una longitud de onda determinada, y la luz generada presenta una desviación del haz muy baja. El material excitado puede ser un gas, un sólido o un líquido, pero su forma —o la forma de su recipiente— debe ser tal que forme un interferómetro en el que la longitud de onda que se amplifica se refleje numerosas veces en un sentido y otro. Una pequeña parte de la radiación excitada se transmite a través de uno de los espejos del interferómetro. Este dispositivo se denomina láser, que en inglés corresponde al acrónimo de “amplificación de luz por emisión estimulada de radiación”. El proceso de suministrar energía a un número elevado de átomos para llevarlos a un estado adecuado de energía superior se denomina bombeo. El bombeo puede ser óptico o eléctrico. Como un láser puede emitir pulsos de energía extremadamente alta con una desviación de haz muy pequeña, es posible detectar, por ejemplo, luz láser enviada a la Luna y reflejada de vuelta a la Tierra, lo que permite medir con precisión la distancia Tierra-Luna. El haz intenso y estrecho del láser ha encontrado aplicaciones prácticas en cirugía y en el corte de metales.
El físico e ingeniero eléctrico británico Dennis Gabor, nacido en Hungría, fue el primero en observar que si se pudiera registrar el diagrama de difracción de un objeto y conservar también la información sobre la fase, la imagen del objeto podría reconstruirse iluminando con luz coherente el diagrama de difracción registrado. Si se iluminara el diagrama de interferencia con una longitud de onda mayor que la empleada para producirlo, aparecería un aumento de tamaño. Como la fase absoluta de una onda luminosa no puede detectarse directamente, era necesario proporcionar un haz de referencia coherente con el haz que iluminaba el objeto, para que interfiriera con el diagrama de difracción y proporcionara información sobre la fase. Antes del desarrollo del láser, el proyecto de Gabor estaba limitado por la falta de fuentes de luz coherente lo bastante intensas.
Un holograma es un registro fotográfico de la interferencia entre un haz de referencia y el diagrama de difracción del objeto. Para generar un holograma, la luz procedente de un único láser se divide en dos haces. El haz de referencia ilumina la placa fotográfica —por ejemplo, a través de una lente y un espejo— y el segundo haz ilumina el objeto. El haz de referencia y la luz reflejada por el objeto forman un diagrama de difracción sobre la placa fotográfica. Si una vez revelado el holograma se ilumina con luz coherente, no necesariamente de la misma longitud de onda que la empleada para crearlo, puede obtenerse una imagen tridimensional del objeto. Es posible producir hologramas de un objeto teórico mediante ordenadores o computadoras, y después pueden reconstruirse las imágenes de esos objetos.
Los haces láser intensos y coherentes permiten estudiar nuevos efectos ópticos producidos por la interacción de determinadas sustancias con campos eléctricos, y que dependen del cuadrado o de la tercera potencia de la intensidad de campo. Esta rama de la óptica se denomina óptica no lineal, y las interacciones que estudia afectan al índice de refracción de las sustancias. El efecto Kerr antes mencionado pertenece a este grupo de fenómenos.
Se ha observado la generación armónica de luz. Por ejemplo, la luz láser infrarroja con longitud de onda de 1,06 micrómetros puede convertirse en luz verde con longitud de onda de 0,53 micrómetros (es decir, justo la mitad) mediante un cristal de niobato de sodio y bario. Es posible producir fuentes de luz coherente ampliamente sintonizables en la zona de la luz visible y el infrarrojo cercano bombeando medios adecuados con luz o con radiación de menor longitud de onda. Se puede lograr que un cristal de niobato de litio presente fluorescencia roja, amarilla y verde bombeándolo con luz láser azul verdosa con una longitud de onda de 488 nanómetros. Algunos fenómenos de difusión pueden ser estimulados con un único láser para producir pulsos de luz intensos en una amplia gama de longitudes de onda monocromáticas. Los efectos ópticos no lineales se aplican en el desarrollo de moduladores eficaces de banda ancha para sistemas de comunicación.
Bibliografía
Física para estudiantes de ciencias e ingeniería T. II.
FREDERICK J. BUECHE.
McGraw-Hill. México,1979
Introducción a la física.
J. CASTRILLON
Enciclopedia de las ciencias T. 5
Física óptica
Grolier, México.
Enciclopedia Océano
Óptica
Edición en español OL 1999
Artículos varios en internet
2
Descargar
Enviado por: | Alberto Ruiz Meré |
Idioma: | castellano |
País: | España |