Microscopio

Óptica. Galileo. Microscopios óptico, electrónico, de sonda de barrido. Efecto túnel. Ocular. Lentes. Objetivos. Condensador. Foco. Diafragma. Iris

  • Enviado por: El remitente no desea revelar su nombre
  • Idioma: castellano
  • País: México México
  • 8 páginas
publicidad
cursos destacados
Análisis de Series
Análisis de Series
En el curso aprenderás como analizar la convergencia o la divergencia de una serie. También...
Ver más información

PREICFES SABER 11 ¡Completo! Version 2014
PREICFES SABER 11 ¡Completo! Version 2014
NO TE PIERDAS EL MUNDIAL YENDO A UN PREICFES VACACIONAL TRADICIONAL, MEJOR ESTUDIA DESDE TU CELULAR...
Ver más información

publicidad

Historia del microscopio

El microscopio se invento, hacia 1610, por Galileo, según los italianos, o por Jansen, en opinión de los holandeses. La palabra microscopio fue utilizada por primera vez por los componentes de la "Accademia dei Lincei" una sociedad científica a la que pertenecía Galileo y que publicaron un trabajo sobre la observación microscópica del aspecto de una abeja.

*Galileo Galilei

Astrónomo y físico italiano. Considerado como el verdadero fundador del método experimental. Sus descubrimientos son innumerables, y empezaron en plena juventud. A los 19 años, al comprobar que las oscilaciones de un lámpara suspendida en la bóveda de la catedral de Pisa, se le ocurrió la idea de aplicar el péndulo a la medición del tiempo. Fue uno de los primeros en emplear termómetros de líquido, estableció las leyes de los vasos comunicantes e ideó la balanza hidrostática. En 1612 construyó el primer microscopio; tres años antes, en Venecia, había construido el anteojo con el cual comenzó a estudiar los astros.

Sin embargo las primeras publicaciones importantes en el campo de la microscopia aparecen en 1660 y 1665 cuando Malpighi prueba la teoría de Harvey sobre la circulación sanguínea al observar al microscopio los capilares sanguíneos y Hooke publica su obra Micrographia.

*Marcello Malpighi

Anatomista italiano. Médico del papa Inocencio XII, fue uno de los primeros en aplicar el microscopio al estudio de los tejidos, lo que le permitió descubrir nuevas formaciones histológicas (corpúsculos de Malpighi, del riñón). Estudio también los órganos respiratorios de los insectos y diversos aspectos del desarrollo embriológico. Dio a conocer los resultados de este labor en varios tratados

A mediados del siglo XVII un comerciante holandés, Leenwenhoek, utilizando microscopios simples de fabricación propia describió por primera vez protozoos, bacterias, espermatozoides y glóbulos rojos.

Durante el siglo XVIII el microscopio sufrió diversos adelantos mecánicos que aumentaron su estabilidad y su facilidad de uso aunque no se desarrollaron mejoras ópticas. Las mejoras mas importantes de la óptica surgieron en 1877 cuando Abbe publica su teoría del microscopio y por encargo de Carl Zeiss mejora la microscopía de inmersión sustituyendo el agua por aceite de cedro lo que permite obtener aumentos de 2000A principios de los años 30 se habia alcanzado el limite teórico para los microscopios ópticos no consiguiendo estos, aumentos superiores a 500X o 1000X sin embargo existia un deseo científico de observar los detalles de estructuras celulares ( núcleo, mitochondria... etc.).

El microscopio electrónico de transmisión (T.E.M.) fué el primer tipo de microscopio electrónico desarrollado este utiliza un haz de electrones en lugar de luz para enfocar la muestra consiguiendo aumentos de 100.000 X. Fue desarrollada por Max Knoll y Ernst Ruska en Alemania en 1931. Posteriormente, en 1942 se desarrolla el microscopio electrónico de barrido (SEM).

Microscopio, cualquiera de los distintos tipos de instrumentos que se utilizan para obtener una imagen aumentada de objetos minúsculos o detalles muy pequeños de los mismos.

Microscopio óptico

El tipo de microscopio más utilizado es el microscopio óptico, que se sirve de la luz visible para crear una imagen aumentada del objeto. El microscopio óptico más simple es la lente convexa doble con una distancia focal corta. Estas lentes pueden aumentar un objeto hasta 15 veces. Por lo general se utilizan microscopios compuestos, que disponen de varias lentes con las que se consiguen aumentos mayores. Algunos microscopios ópticos pueden aumentar un objeto por encima de las 2.000 veces.

El microscopio compuesto consiste en dos sistemas de lentes, el objetivo y el ocular, montados en extremos opuestos de un tubo cerrado. El objetivo está compuesto de varias lentes que crean una imagen real aumentada del objeto examinado. Las lentes de los microscopios están dispuestas de forma que el objetivo se encuentre en el punto focal del ocular. Cuando se mira a través del ocular se ve una imagen virtual aumentada de la imagen real. El aumento total del microscopio depende de las longitudes focales de los dos sistemas de lentes.

El equipamiento adicional de un microscopio consta de un armazón con un soporte que sostiene el material examinado y de un mecanismo que permite acercar y alejar el tubo para enfocar la muestra. Los especímenes o muestras que se examinan con un microscopio son transparentes y se observan con una luz que los atraviesa, y se suelen colocar sobre un rectángulo fino de vidrio. El soporte tiene un orificio por el que pasa la luz. Bajo el soporte se encuentra un espejo que refleja la luz para que atraviese el espécimen. El microscopio puede contar con una fuente de luz eléctrica que dirige la luz a través de la muestra.

La fotomicrografía, que consiste en fotografiar objetos a través de un microscopio, utiliza una cámara montada por encima del ocular del microscopio. La cámara suele carecer de objetivo, ya que el microscopio actúa como tal. El término microfotografía, utilizado a veces en lugar de fotomicrografía, se refiere a una técnica de duplicación y reducción de fotografías y documentos a un tamaño minúsculo para guardarlos en un archivo.

Los microscopios que se utilizan en entornos científicos cuentan con varias mejoras que permiten un estudio integral del espécimen. Dado que la imagen de la muestra está ampliada muchas veces e invertida, es difícil moverla de forma manual. Por ello los soportes de los microscopios científicos de alta potencia están montados en una plataforma que puede moverse con tornillos micrométricos. Algunos microscopios cuentan con soportes giratorios. Todos los microscopios de investigación cuentan con tres o más objetivos montados en un cabezal móvil que permite variar la potencia de aumento.

Microscopios ópticos especiales

Hay diversos microscopios ópticos para funciones especiales. Uno de ellos es el microscopio estereoscópico, que no es sino un par de microscopios de baja potencia colocados de forma que convergen en el espécimen. Estos instrumentos producen una imagen tridimensional.

El microscopio de luz ultravioleta utiliza el rango ultravioleta del espectro luminoso en lugar del rango visible, bien para aumentar la resolución con una longitud de onda menor o para mejorar el detalle absorbiendo selectivamente distintas longitudes de onda de la banda ultravioleta. Dado que el vidrio no transmite las longitudes de onda más cortas de la luz ultravioleta, los elementos ópticos de estos microscopios están hechos con cuarzo, fluorita o sistemas de espejos aluminizados. Además, dado que la radiación ultravioleta es invisible, la imagen se muestra con fosforescencia (véase Luminiscencia), en fotografía o con un escáner electrónico. El microscopio de luz ultravioleta se utiliza en la investigación científica.

El microscopio petrográfico o de polarización se utiliza para identificar y estimar cuantitativamente los componentes minerales de las rocas ígneas y las rocas metamórficas. Cuenta con un prisma de Nicol u otro tipo de dispositivo para polarizar la luz que pasa a través del espécimen examinado (véase Óptica: Polarización de la luz). Otro prisma Nicol o analizador determina la polarización de la luz que ha pasado a través del espécimen. El microscopio tiene un soporte giratorio que indica el cambio de polarización acusado por el espécimen.

El microscopio en campo oscuro utiliza una luz muy intensa en forma de un cono hueco concentrado sobre el espécimen. El campo de visión del objetivo se encuentra en la zona hueca del cono de luz y sólo recoge la luz que se refleja en el objeto. Por ello las porciones claras del espécimen aparecen como un fondo oscuro y los objetos minúsculos que se están analizando aparecen como una luz brillante sobre el fondo. Esta forma de iluminación se utiliza para analizar elementos biológicos transparentes y sin manchas, invisibles con iluminación normal.

El microscopio de fase ilumina el espécimen con un cono hueco de luz, como en el microscopio en campo oscuro. Sin embargo en el microscopio de fase el cono de luz es más estrecho y entra en el campo de visión del objetivo, que contiene un dispositivo en forma de anillo que reduce la intensidad de la luz y provoca un cambio de fase de un cuarto de la longitud de onda. Este tipo de iluminación provoca variaciones minúsculas en el índice de refracción de un espécimen transparente, haciéndolo visible. Este tipo de microscopio es muy útil a la hora de examinar tejidos vivos, por lo que se utiliza con frecuencia en biología y medicina.

Entre los microscopios avanzados se encuentran el microscopio de campo cercano, con el que pueden verse detalles algo menores a la longitud de onda de la luz. Se hace pasar un haz de luz a través de un orificio diminuto y se proyecta a través del espécimen a una distancia equivalente a la mitad del diámetro del orificio, formando una imagen completa.

Microscopio electrónico

La potencia amplificadora de un microscopio óptico está limitada por la longitud de onda de la luz visible. El microscopio electrónico utiliza electrones para iluminar un objeto. Dado que los electrones tienen una longitud de onda mucho menor que la de la luz pueden mostrar estructuras mucho más pequeñas. La longitud de onda más corta de la luz visible es de alrededor de 4.000 ángstroms (1 ángstrom es 0,0000000001 metros). La longitud de onda de los electrones que se utilizan en los microscopios electrónicos es de alrededor de 0,5 ángstroms.

Todos los microscopios electrónicos cuentan con varios elementos básicos. Disponen de un cañón de electrones que emite los electrones que chocan contra el espécimen, creando una imagen aumentada. Se utilizan lentes magnéticas para crear campos que dirigen y enfocan el haz de electrones, ya que las lentes convencionales utilizadas en los microscopios ópticos no funcionan con los electrones. El sistema de vacío es una parte relevante del microscopio electrónico. Los electrones pueden ser desviados por las moléculas del aire, de forma que tiene que hacerse un vacío casi total en el interior de un microscopio de estas características. Por último, todos los microscopios electrónicos cuentan con un sistema que registra o muestra la imagen que producen los electrones.

Hay dos tipos básicos de microscopios electrónicos: el microscopio electrónico de transmisión (Transmission Electron Microscope, TEM) y el microscopio electrónico de barrido (Scanning Electron Microscope, SEM). Un TEM dirige el haz de electrones hacia el objeto que se desea aumentar. Una parte de los electrones rebotan o son absorbidos por el objeto y otros lo atraviesan formando una imagen aumentada del espécimen. Para utilizar un TEM debe cortarse la muestra en capas finas, no mayores de un par de miles de ángstroms. Se coloca una placa fotográfica o una pantalla fluorescente detrás del objeto para registrar la imagen aumentada. Los microscopios electrónicos de transmisión pueden aumentar un objeto hasta un millón de veces.

Un microscopio electrónico de barrido crea una imagen ampliada de la superficie de un objeto. No es necesario cortar el objeto en capas para observarlo con un SEM, sino que puede colocarse en el microscopio con muy pocos preparativos. El SEM explora la superficie de la imagen punto por punto, al contrario que el TEM, que examina una gran parte de la muestra cada vez. Su funcionamiento se basa en recorrer la muestra con un haz muy concentrado de electrones, de forma parecida al barrido de un haz de electrones por la pantalla de una televisión. Los electrones del haz pueden dispersarse de la muestra o provocar la aparición de electrones secundarios. Los electrones perdidos y los secundarios son recogidos y contados por un dispositivo electrónico situado a los lados del espécimen. Cada punto leído de la muestra corresponde a un píxel en un monitor de televisión. Cuanto mayor sea el número de electrones contados por el dispositivo, mayor será el brillo del píxel en la pantalla. A medida que el haz de electrones barre la muestra, se presenta toda la imagen de la misma en el monitor. Los microscopios electrónicos de barrido pueden ampliar los objetos 100.000 veces o más. Este tipo de microscopio es muy útil porque, al contrario que los TEM o los microscopios ópticos, produce imágenes tridimensionales realistas de la superficie del objeto.

Se han desarrollado otros tipos de microscopios electrónicos. Un microscopio electrónico de barrido y transmisión (Scanning Trasnmission Electron Microscope, STEM) combina los elementos de un SEM y un TEM, y puede mostrar los átomos individuales de un objeto. El microanalizador de sonda de electrones, un microscopio electrónico que cuenta con un analizador de espectro de rayos X, puede analizar los rayos X de alta energía que produce el objeto al ser bombardeado con electrones. Dado que la identidad de los diferentes átomos y moléculas de un material se puede conocer utilizando sus emisiones de rayos X, los analizadores de sonda de electrones no sólo proporcionan una imagen ampliada de la muestra, como hace un microscopio electrónico, sino que suministra también información sobre la composición química del material.

Microscopio de sonda de barrido

En los microscopios de sonda de barrido se utiliza una sonda que recorre la superficie de una muestra, proporcionando una imagen tridimensional de la red de átomos o moléculas que la componen. La sonda es una afilada punta de metal que puede tener un grosor de un solo átomo en su extremo. Un tipo importante de microscopio de sonda de barrido es el microscopio de túnel de barrido (siglas en inglés de Scanning Tunelling Microscope, STM) desarrollado en 1981. Este microscopio utiliza un fenómeno de la física cuántica, denominado efecto túnel, para proporcionar imágenes detalladas de sustancias conductoras de electricidad. La sonda se coloca a una distancia de pocos ángstroms de la superficie del material y se aplica un voltaje pequeño entre la superficie y la sonda. A causa de la poca distancia entre el material y la sonda algunos electrones se escapan a través del hueco, generando una corriente. La magnitud de la corriente del efecto túnel depende de la distancia entre la superficie y la sonda. El flujo de corriente es mayor cuando la sonda se acerca al material y disminuye cuando se aleja. A medida que el mecanismo de barrido mueve la sonda por encima de la superficie, se ajusta de modo automático la altura de la sonda para mantener constante la corriente del efecto túnel. Estos ajustes minúsculos permiten dibujar las ondulaciones de la superficie. Después de muchas pasadas hacia adelante y hacia atrás se utiliza una computadora para crear una representación tridimensional del material.

Otro tipo de microscopio de sonda de barrido es el microscopio de fuerza atómica (Atomic Force Microscope, AFM), que no emplea la corriente de efecto túnel y que por lo tanto puede utilizarse también en materiales no conductores. A medida que la sonda se mueve a lo largo de la superficie de la muestra los electrones de la sonda de metal son repelidos por las nubes electrónicas de los átomos de la misma. La altura de la sonda se ajusta de modo automático para mantener constante la fuerza recibida. Un sensor registra el movimiento ascendente y descendente de la sonda y entrega la información a una computadora, que a su vez la utiliza para dibujar una imagen tridimensional de la superficie del espécimen.

Ocular (Ocular):

Qué el utilizador mira a través para examinar el espécimen. La potencia del ocular multiplicada por la potencia objetiva iguala la ampliación total (es decir 10X objetivo 10X del ocular X = 100X. El espécimen se ha agrandado 100 veces).

CUERPO:

El microscopio puede venir como un monocular, (un ocular y tubo), o binocular, (dos oculares y tubos). Si es un binocular generalmente solamente un tubo del ocular será ajustable mientras que el otro es fijo.

OBJETIVOS:

El objetivo es la lente más importante del microscopio para producir una imagen clara de la alta resolución. El objetivo tiene varias funciones importantes. Debe recolectar la luz que viene de cada uno de las varias partes o puntas del espécimen. Debe tener la capacidad de reconstituir la luz que viene de las varias puntas del espécimen en las varias puntas correspondientes de la imagen. El objetivo se debe construir de modo que sea enfocado cerca bastante al espécimen para proyectar una imagen magnificada, verdadera para arriba en el tubo del cuerpo.

ETAPA MECÁNICA:

Un dispositivo para llevar a cabo diapositivas con seguridad con las perillas con estrías separadas para mover la diapositiva desde frente a la parte posteriora (norte y al sur) o de lado a lado (este y al oeste). Estas perillas pueden estar en los ejes separados o en un eje coaxial. Pueden enderezar o zurdo.

CONDENSADOR DEL SUB-STAGE:

Se cabe debajo entre de la etapa del microscopio, la lámpara que ilumina y el espécimen. La abertura del condensador y el enfocarse apropiado del condensador son de importancia crítica en realizar la capacidad máxima de la lente objetiva en uso. Asimismo, el uso apropiado del diafragma ajustable del diafragma de la abertura (incorporado en el condensador) es también importante para asegurar la iluminación apropiada y contraste. La apertura y el cierre del diafragma del diafragma controla el ángulo de los rayos de la iluminación que pasan a través del condensador, a través del espécimen y entonces en la lente objetiva.

CONTROLES DEL FOCO DE FINE/COARSE:

En ambas caras del soporte del microscopio hay dos conjuntos de perillas del ajuste. La perilla del ajuste aproximado para movimientos que se enfocan incrementales más grandes y la perilla del ajuste fino para movimientos que se enfocan incrementales más pequeños. Las perillas del ajuste sirven para traer el objetivo y el espécimen más cercano juntas o para engendrar aparte. En la mayoría de los microscopios las perillas del ajuste levantan o bajan la etapa; en algunos microscopios las perillas levantan o bajan el tubo el microscopio o el pedazo de la nariz.

Iluminador (Estándar):

Esta parte proporciona a la iluminación requerida para realizar cualquier función con el microscopio. Es básicamente una fuente de alimentación electrónica que proporciona a electricidad a la fuente de la lámpara. Esta fuente de la lámpara podía ser una lámpara estándar del tungsteno o lámpara del halógeno. **time-out** ventaja halógeno tipo lámpara ser más luz para publicar salida vatiaje y en bajo nivel iluminación luz no tender para dar vuelta amarillo a medida que estándar tungsteno lámpara hacer.

Cubierta Del Iluminador (Estándar):

Aquí es adonde el elemento electrónico asociado al iluminador se pone. Algunos microscopios más viejos tienen transformadores separados del control y el único interior de la cubierta es la lámpara, ensamblaje del socket, condensador del campo y el diafragma del diafragma del campo.

DIAFRAGMA DEL CAMPO CONDENSER/IRIS:

Esta pieza del microscopio contiene la lente de condensador de la lámpara y el diafragma del diafragma del campo. Este diafragma controla el área del círculo de la luz que ilumina el espécimen.

Vídeos relacionados