Métodos numéricos

Gauss-Seidel. Diagrama de Flujo. Gauss-Jordan. Newton-Raphson. Programas de métodos

  • Enviado por: Rockdrigo
  • Idioma: castellano
  • País: México México
  • 5 páginas
publicidad
cursos destacados
Introducción a Excel 2010
Introducción a Excel 2010
En este curso conocerás las bases para trabajar en Excel 2010. Lo he dividido en 5 capítulos con los que aprenderás...
Ver más información

MICROSOFT OFFICE 2010: WORD, EXCEL, POWERPOINT
MICROSOFT OFFICE 2010: WORD, EXCEL, POWERPOINT
Este curso aporta el conocimiento necesario para realizar tareas básicas en los programas ofimáticos...
Ver más información

publicidad

Fórmula general del método.

Codificación (Programa).

DIMENSION X(5), T(5)

READ (5,30)N

FORMAT (12)

READ (5,31) (X(I), I=1,N)

FORMAT (5F3.0)

WRITE (6,32) (X(I),I=1,N)

FORMAT (5(2X,F3.0))

READ (5,31)(X(I),I=1,N)

WRITE(6,32)(X(I), I=1,N)

C=0

DO 6 I=1,N

C=C+X(I)*T(I)

CONTINUE

WRITE (6,33)C

FORMAT(E15.8)

CALL EXIT

END

Aproximaciones sucesivas.

Fórmula General

Codificación(Programa)

READ (2,1)N

1 FORMAT(I2)

K=0

READ (2,4) A,B E1, E2

4 FORMAT (2F4.0,2F9.6)

7 X=(A+B)/2

WRITE(3,5)X

5 FORMAT (5X, 2HX=, E15.8)

K=K+1

IF (ABS (X*2-25.))-E1)6,6,8

8 IF ((ABS(B-A))-E2)6,6,10

10 IF (N-K)6,6,12

12 IF ((X*2-25.)*(A*2-25.)) 13,6, 15

15 A=X

GO TO 7

13 B=X

GO TO 7

6 CALL EXIT

END

Newton-Raphson

Diagrama de bloques (pseudo código).

Diagrama de Flujo

Codificación(Programa)

WRITE (3,101)

FORMAT (1H1,//,10X,36H DETERMINACIÓN DE UNA RAÍZ APROXIMADA,/,10X,31 1H POR EL METODO DE NEWTON RHAPSON,//)

READ (2, 102) X, E, N

FORMAT (F5, 0,F10, 6, 13)

K=1

FX=X**3-4.3*X*2+4.*X-17.2

DFX=3.*X**2-8. 6*X+4

XNUEVA=X X-(FX/DFX)

WRITE (3,103)XNUEVA

FORMAT (10X,7HX NUEVA=E15,8)

IF (ABS (XNUEVA-X)-E 8,89

IF(N-K)8,8,7

K=K+1

X=XNUEVA

GO TO 3

STOP

END

Operaciones de Matrices

SUMA

Codificación (Programa)

DIMENSION A(3,3), B(3,3), C(3,3)

READ (5,1)M,N

FORMAT(2I2)

READ (5,2) ((A(I,J),J=1, N), I=1, M

READ (5,2) ((B(I,J),J=1, N), I=1, M

FORMAT (3F.0)

WRITE (6,3)((A(I,J), J=1, N) , I=1, M)

WRITE (6,3)((B(I,J), J=1, N) , I=1, M)

FORMAT (3(2X,F5.0))

DO 6 I=1, M

DO 6 J=1, N

C(I,J)=A(I,J)+B(I,J)

CONTINUE

WRITE (6,3)((C(I,J),J=1,N),I=1,M

CALL EXIT

END

Multiplicación

Codificación (Programa)

DIMENSION A(3,3),B(3,3),C(3,3)

READ(5,10)M,N

FORMAT (2I2)

READ(5,1)((A(I.,J), J=1, N), I.=1, M)

FORMAT (3F3.0)

READ (5,1) ((B(I,J), J=1, N), I=1, M)

WRITE (6,2) ((A(I,J),J=1, N) ,I=1, M

WRITE (6,2) ((B(I,J),J=1, N) ,I=1, M

FORMAT (3(2X,F5.0))

Gauss-Jordan

DIAGRAMA DE FLUJO DE GAUSS JORDAN

INICIO

A,B,C,D [ 1..10, 1...20]

J,M,N,[INT]

MATRIZ CUADRADA?

1 AL 10

N=M+1 FOR I= 1 TO M DO

M>=1 FOR J = 1 TO N DO

N<=20

J<=0

ELEMENTOS DE MATRIZ

INDEPENDIENTE A [ I,J] FOR J= 1 TO N DO

A,,B,C,..[1,J],[2,J]....

GOTO XY (X+4,Y)

VALOR DE X1,X2,X3...

OTRO CALCULO(S/N)

Codificación(Programa)

DIMENSION A(20,21)

READ (5,10)N,M,E

FORMAT(2I3,E8.1)

NA=N+M

READ (5,11)((A (I,J),J=1NA),I=1, N)

FORMAT (7F5.0)

WRITE (6,12)((A(I,J),J=1,NA),I=1, N)

FORMAT (2X,7F5.0)

DET=1

DO 2 K=1, N

DET = DET* A (K,K)

IF ((ABS (A(K,K))).GT.E)GO TO 50

WRITE (6,13)

FORMAT (2X,*PIVOTE PE QUEÑO*)

GO TO 5

IP1=K+1

DO 3 J=IP1, NA

A(K,J)=A(K,J)/A(K,K)

CONTINUE

A(K,K)=1

DO 2 I=1, N

IF (I.EQ.K.OR.A(I,K).EQ.0.)GO TO 2

DO 4 J=IP1, NA

A(I,J)=A(I,J)-A(I,K)*A(K,J)

A(I,K)=0.

CONTINUE

WRITE(6,14)DTE

FORMAT (2X, 4HDET=,E15.8)

WRITE (6,15)((A(Di,J), J=1, NA), I=1, N)

FORMAT (7(2X,F8.5))

CALL EXIT

END

Gauss-Seidel

DIAGRAMA DE FLUJO DEL MÉTODO GAUSS - SEIDEL

INICIO

VAR: A:ARRAY [1...20],1...20]

I,J,K,N,X,Y,I2[ INT]

T,M,S,N [R]

NUMERO DE ECUACIONES

ELEM =9

FOR I = 1 TO N DO

GOTOXY (1,Y,X:3)

FOR J: = 1 TO N +1

GOTO XY READ [A[ I , J ] ]

IF J =N+1 IF A [I,O] IF A[ 1,1]=0

I = 0 I2=J

T=A[ I2,J]

T=[I,J]

IF I <>K

A[I,J]=A[1,J]- T*{K,J]

OTRO CALCULO (S/N)

FIN