Medios de transmisión

Ancho de banda. Cables. Cable coaxial y óptico. Fibra óptica. Par trenzado

  • Enviado por: Sergio
  • Idioma: castellano
  • País: Colombia Colombia
  • 5 páginas
publicidad
cursos destacados
Certifícate PMP - Plan Oro ¡Garantizado!
Certifícate PMP - Plan Oro ¡Garantizado!
¡CURSO 100% TELEPRESENCIAL!



Otorga las 35 Horas de...
Ver más información

El Método Harvard de Negociación
El Método Harvard de Negociación
Extensamente empleado en todos los sectores, desde el ámbito laboral al mercantil pasando por conflictos sociales o...
Ver más información

publicidad

MEDIOS DE TRANSMISION

3 . 1 . Medios de transmisión guiados

En medios guiados , el ancho de banda o velocidad de transmisión dependen de la distancia y de si el enlace es punto a punto o multipunto .

3.1.1. Par trenzado

Es el medio guiado más barato y más usado .

Consiste en un par de cables , embutidos para su aislamiento , para cada enlace de comunicación . Debido a que puede haber acoples entre pares , estos se trenza con pasos diferentes . La utilización del trenzado tiende a disminuir la interferencia electromagnética .

Este tipo de medio es el más utilizado debido a su bajo coste ( se utiliza mucho en telefonía ) pero su inconveniente principal es su poca velocidad de transmisión y su corta distancia de alcance .

Con estos cables , se pueden transmitir señales analógicas o digitales .

Es un medio muy susceptible a ruido y a interferencias . Para evitar estos problemas se suele trenzar el cable con distintos pasos de torsión y se suele recubrir con una malla externa para evitar las interferencias externas .

3.1.2. Pares trenzados apantallados y sin apantallar

 

Los pares sin apantallar son los más baratos aunque los menos resistentes a interferencias ( aunque se usan con éxito en telefonía y en redes de área local ) . A velocidades de transmisión bajas , los pares apantallados son menos susceptibles a interferencias , aunque son más caros y más difíciles de instalar .

3.1.3. Cable coaxial

Consiste en un cable conductor interno ( cilíndrico ) separado de otro cable conductor externo por anillos aislantes o por un aislante macizo . Todo esto se recubre por otra capa aislante que es la funda del cable .

Este cable , aunque es más caro que el par trenzado , se puede utilizar a más larga distancia , con velocidades de transmisión superiores , menos interferencias y permite conectar más estaciones .

Se suele utilizar para televisión , telefonía a larga distancia , redes de área local , conexión de periféricos a corta distancia , etc...

Se utiliza para transmitir señales analógicas o digitales .

Sus inconvenientes principales son : atenuación , ruido térmico , ruido de intermodulación .

Para señales analógicas , se necesita un amplificador cada pocos kilómetros y para señales digitales un repetidor cada kilómetro .

3.1.4. Fibra óptica

Se trata de un medio muy flexible y muy fino que conduce energía de naturaleza óptica .

Su forma es cilíndrica con tres secciones radiales : núcleo , revestimiento y cubierta .

El núcleo está formado por una o varias fibras muy finas de cristal o plástico . Cada fibra está rodeada por su propio revestimiento que es un cristal o plástico con diferentes propiedades ópticas distintas a las del núcleo . Alrededor de este conglomerado está la cubierta ( constituida de material plástico o similar ) que se encarga de aislar el contenido de aplastamientos , abrasiones , humedad , etc...

Es un medio muy apropiado para largas distancias e incluso últimamente para LAN's .

Sus beneficios frente a cables coaxiales y pares trenzados son :

ð     Permite mayor ancho de banda .

ð     Menor tamaño y peso .

ð     Menor atenuación .

ð     Aislamiento electromagnético .

ð     Mayor separación entre repetidores .

Su rango de frecuencias es todo el espectro visible y parte del infrarrojo .

El método de transmisión es : los rayos de luz inciden con una gama de ángulos diferentes posibles en el núcleo del cable , entonces sólo una gama de ángulos conseguirán reflejarse en la capa que recubre el núcleo . Son precisamente esos rayos que inciden en un cierto rango de ángulos los que irán rebotando a lo largo del cable hasta llegar a su destino . A este tipo de propagación se le llama multimodal . Si se reduce el radio del núcleo , el rango de ángulos disminuye hasta que sólo sea posible la transmisión de un rayo , el rayo axial , y a este método de transmisión se le llama monomodal .

Los inconvenientes del modo multimodal es que debido a que dependiendo al ángulo de incidencia de los rayos , estos tomarán caminos diferentes y tardarán más o menos tiempo en llegar al destino , con lo que se puede producir una distorsión ( rayos que salen antes pueden llegar después ) , con lo que se limita la velocidad de transmisión posible .

Hay un tercer modo de transmisión que es un paso intermedio entre los anteriormente comentados y que consiste en cambiar el índice de refracción del núcleo . A este modo se le llama multimodo de índice gradual .

Los emisores de luz utilizados son : LED ( de bajo coste , con utilización en un amplio rango de temperaturas y con larga vida media ) y ILD ( más caro , pero más eficaz y permite una mayor velocidad de transmisión ) .

3 . 2 . Transmisión inalámbrica

SE utilizan medios no guiados , principalmente el aire . Se radia energía electromagnética por medio de una antena y luego se recibe esta energía con otra antena .

Hay dos configuraciones para la emisión y recepción de esta energía : direccional y omnidireccional . En la direccional , toda la energía se concentra en un haz que es emitido en una cierta dirección , por lo que tanto el emisor como el receptor deben estar alineados . En el método omnidireccional , la energía es dispersada en múltiples direcciones , por lo que varias antenas pueden captarla . Cuanto mayor es la frecuencia de la señal a transmitir , más factible es la transmisión unidireccional .

Por tanto , para enlaces punto a punto se suelen utilizar microondas ( altas frecuencias ) . Para enlaces con varios receptores posibles se utilizan las ondas de radio ( bajas frecuencias ) . Los infrarrojos se utilizan para transmisiones a muy corta distancia ( en una misma habitación ) .

3.2.1. Microondas terrestres

Suelen utilizarse antenas parabólicas . Para conexionas a larga distancia , se utilizan conexiones intermedias punto a punto entre antenas parabólicas .

Se suelen utilizar en sustitución del cable coaxial o las fibras ópticas ya que se necesitan menos repetidores y amplificadores , aunque se necesitan antenas alineadas . Se usan para transmisión de televisión y voz .

La principal causa de pérdidas es la atenuación debido a que las pérdidas aumentan con el cuadrado de la distancia ( con cable coaxial y par trenzado son logarítmicas ) . La atenuación aumenta con las lluvias .

Las interferencias es otro inconveniente de las microondas ya que al proliferar estos sistemas , pude haber más solapamientos de señales .

3.2.2. Microondas por satélite

El satélite recibe las señales y las amplifica o retransmite en la dirección adecuada .

Para mantener la alineación del satélite con los receptores y emisores de la tierra , el satélite debe ser geoestacionario .

Se suele utilizar este sistema para :

ð     Difusión de televisión .

ð     Transmisión telefónica a larga distancia .

ð     Redes privadas .

El rango de frecuencias para la recepción del satélite debe ser diferente del rango al que este emite , para que no haya interferencias entre las señales que ascienden y las que descienden .

Debido a que la señal tarda un pequeño intervalo de tiempo desde que sale del emisor en la Tierra hasta que es devuelta al receptor o receptores , ha de tenerse cuidado con el control de errores y de flujo de la señal .

Las diferencias entre las ondas de radio y las microondas son :

ð     Las microondas son unidireccionales y las ondas de radio omnidireccionales .

ð     Las microondas son más sensibles a la atenuación producida por la lluvia .

ð     En las ondas de radio , al poder reflejarse estas ondas en el mar u otros objetos , pueden aparecer múltiples señales "hermanas" .

3.2.3. Infrarrojos

Los emisores y receptores de infrarrojos deben estar alineados o bien estar en línea tras la posible reflexión de rayo en superficies como las paredes . En infrarrojos no existen problemas de seguridad ni de interferencias ya que estos rayos no pueden atravesar los objetos ( paredes por ejemplo ) . Tampoco es necesario permiso para su utilización ( en microondas y ondas de radio si es necesario un permiso para asignar una frecuencia de uso ) .