Física


Ley de reflexión de la luz


DESARROLLO

La hipótesis de los rayos rectos luminosos no es la única hipótesis de la óptica geométrica. Para explicar el fenómeno de la reflexión de la luz (Figura 4) es necesario suponer que la dirección de los rayos luminosos cambia en algunas circunstancias. Una imagen en un espejo se ve como si el objeto estuviera atrás, y no frente a éste. La óptica geométrica explica este familiar fenómeno suponiendo que los rayos luminosos cambian de dirección al llegar al espejo. La forma precisa en que ocurre este cambio se conoce como ley de la reflexión de la luz. Es una ley muy sencilla: los rayos incidente y reflejado hacen ángulos iguales con el espejo; o con la perpendicular al espejo, que es como suelen medirse estos ángulos (Figura 10). Esta ley, por cierto, también se puede deducir aplicando la ley de variación del tamaño aparente con la distancia para explicar los tamaños aparentes de un objeto y de su imagen en un espejo plano. O, dicho de otra forma, si vemos nuestra imagen en un espejo plano del tamaño que la vemos es porque los rayos incidente y reflejado forman ángulos iguales con el espejo.

Ley de reflexión de la luz

 

Figura 10. La ley de la reflexión de la luz: el ángulo de incidencia, i, y el de reflexión, r, de un rayo luminoso sobre una superficie son iguales; esto es i = r.

La ley de la refracción de la luz: el seno del ángulo de incidencia, sen i, y el seno del ángulo de refracción, sen r', de un rayo luminoso que atraviesa la superficie de separación de dos medios transparentes están en las misma proporción para cualquier valor del ángulo i; esto es, sen i /sen r' = n. Si la luz pasa de aire al agua, sen i /sen r' = 4/3.

 

Un cuerpo parcialmente sumergido en agua se ve chueco; como si se doblara al entrar al agua. Este fenómeno se llama refracción. Además del agua se observa en muchos otros medios transparentes, como el vidrio, llamados refringentes. Era uno de los problemas ópticos pendientes de solución todavía hacia el siglo XIII (Figura 4). Los fenómenos de refracción se incorporan a la óptica geométrica simplemente suponiendo que los rayos luminosos cambian de dirección no sólo al reflejarse sino también al pasar de un medio refringente a otro; por ejemplo, del agua al aire, o del agua al vidrio, o del vidrio al aire. Un experimento sencillo que demuestra este cambio de dirección se muestra en la figura 11. Una moneda pequeña en el fondo de una taza vacía está apenas oculta por el filo de la taza en la figura 11 (a). Llenando lentamente la taza con agua la moneda aparece poco a poco, hasta observarse por completo, en la figura 11(b). Los rayos luminosos emitidos por la moneda que llegan al ojo debido a que son refractados en la superficie del agua se muestran en esa figura; la moneda se ve en la dirección de estos rayos. El experimento muestra también que los rayos refractados están más cerca de la superficie en el medio menos denso; el aire en la figura 11(b).

 

Ley de reflexión de la luz

 

Figura 11. Un experimento para demostrar la refracción de la luz. En (a) la moneda está apenas oculta por una orilla de la taza. En (b) la moneda aparece al llenar lentamente la taza con agua. Los rayos luminosos cambian de dirección al pasar del agua al aire.

 

La forma precisa en que cambia la dirección de los rayos en la refracción, esto es, la ley de la refracción, no es tan simple como la ley de la reflexión. Tal vez por esto, aunque el fenómeno de la refracción era conocido desde la antigüedad, la ley de la refracción no fue descubierta sino hasta el siglo XV por el astrónomo holandés Willebrord Snell, quien, inexplicablemente, no la dio a conocer, describiéndola solamente en sus notas personales de investigación. La ley de la refracción fue divulgada por Descartes en 1627, pero se conoce universalmente como la ley de Snell. No relaciona los ángulos de los rayos luminosos con la perpendicular a la superficie de refracción, sino los senos de esos ángulos. En símbolos matemáticos se expresa así: sen (i) / sen (r') = constante = n; esto es, el cociente de los senos de los ángulos de incidencia i y de refracción r' toma el mismo valor para todos los valores posibles de estos ángulos. Por ejemplo, si los rayos pasan del aire al agua la cantidad constante n, llamada índice de refracción, vale 4/ 3 y se tiene sen (i) / sen (r') = 4/ 3.

La ley de la refracción de la luz también puede ser deducida aplicando la ley de variación del tamaño aparente con la distancia. La figura 12 muestra un sencillo experimento para hacer esto. Dos monedas pequeñas se ponen en dos tazas, una vacía y la otra parcialmente llena de agua. Observándolas desde arriba y a la misma altura, la moneda sumergida en agua se ve más grande debido a que por la refracción de la luz los rayos que emite se abren más al pasar por la superficie del agua y llegan al ojo como si hubieran sido emitidos por una moneda más cercana. De los tamaños aparentes de las dos monedas se deducen los ángulos que forman los rayos con la perpendicular a la superficie; el de los rayos refractados depende de la altura de llenado de la taza. Los senos de estos ángulos se obtienen de una tabla de valores y dividiendo el mayor entre el menor se encuentra que su cociente siempre es 4/ 3, el índice de refracción del agua; independientemente de la altura de llenado de la taza.

 

Ley de reflexión de la luz

 

Figura 12. Un experimento para comprobar la ley de la refracción. La moneda sumergida en el agua se ve más grande porque los rayos que parten de ella se abren al salir aire y parecen llegar de una moneda más cercana. Relacionando los tamaños aparentes con los ángulos de los rayos se obtiene la ley de la refracción, o ley de Snell.

 

La hipótesis de los rayos luminosos y las leyes de la reflexión y de la refracción de la luz son el fundamento de la óptica geométrica. Con ellas es posible predecir el curso que tomarán los rayos luminosos que lleguen a lentes o a espejos. Por ejemplo, en la figura 13, los rayos que llegan de un punto luminoso a la lente de una lupa común son divergentes, pero se hacen convergentes al atravesarla debido a las refracciones que ocurren en las dos superficies del vidrio. Después de alcanzar el punto de convergencia los rayos vuelven a ser divergentes, de manera que si los vemos desde un lugar más lejano aún, los percibimos como si se originaran en el punto de convergencia; es decir, como si el objeto hubiera sido transportado a ese lugar. Se dice que en este punto se forma una imagen real del objeto. Las leyes de la refracción permiten calcular el lugar preciso donde se forma esa imagen. Mirando con otra lupa en ese lugar se observa la imagen amplificada del objeto. Así es, esencialmente, como funciona un telescopio (Figura 14). Este instrumento utiliza dos lentes del tipo llamado convergente, parecidas a la de una lupa en que son más gruesas enmedio que en la orilla. La primera de ellas —llamada objetivo— produce una imagen real de un objeto lejano, como la Luna, en un punto atrás y cerca de la lente. La segunda lente del telescopio, llamada ocular, se usa simplemente como una lente de aumento común para amplificar y observar esta imagen (Figura 14).

 

Ley de reflexión de la luz

 

Figura 13. Una lupa intercepta rayos divergentes emitidos por un punto luminoso y los reúne en otro punto. Los rayos reunidos parecen salir de este lugar. Se dice que aquí se forma una imagen real del punto luminoso.

 

 

Ley de reflexión de la luz

 

Figura 14. Un telescopio sencillo se compone de una lente, llamada objetivo, que forma cerca de ella una imagen real de un objeto lejano, y de una lente de aumento, llamada ocular, con la que se examina esta imagen.

 

Resumiendo lo anterior, la óptica geométrica está compuesta por una hipótesis, la de los rayos rectos luminosos; por dos leyes derivadas de la experiencia, la de la reflexión y la de la refracción de la luz, y por una ciencia matemática, la geometría, con la que se puede aplicar metódicamente a los problemas ópticos. La óptica geométrica ha sido extraordinariamente fructífera por estar basada en leyes que se cumplen con precisión y en una ciencia tan completa como la geometría, pero parte de su éxito es resultado de su hipótesis principal. Es decir, aunque no se ha intentado siquiera aclarar de qué están hechos los rayos luminosos, deben estar hechos de algo que se propaga como esos rayos; de otra manera la teoría no habría tenido tanto éxito.

Isaac Newton suponía que los rayos luminosos están compuestos por partículas extraordinariamente diminutas que los cuerpos luminosos arrojan a gran velocidad y que al penetrar al ojo e incidir sobre la retina estimulan la visión. Newton apoyaba estas ideas en el fenómeno de la propagación rectilínea de la luz, pues sólo suponiéndola compuesta por partículas independientes podía imaginar que los rayos de luz pudieran ser separados unos de otros por medio de un popote como en la figura 1, o de una lente convergente como en la figura 13. Otro importante argumento que Newton daba en apoyo a esta idea era que la luz no da la vuelta a cuerpos opacos; o bien, que la sombra geométrica de un cuerpo está limitada por líneas rectas como en la figura 7. Este argumento se esgrimía principalmente en contra de las ideas de Descartes, quien suponía que la luz era una "especie de presión" propagada alrededor de los cuerpos luminosos que al llegar al ojo estimulaba la visión. Pero, argüía Newton, una zona de presión como ésta no tendría por qué no propagarse alrededor de los cuerpos y entrar en la sombra geométrica; esto es, si la luz fuera causada por esas "zonas de presión", también debería percibirse en la sombra geométrica de cuerpos opacos.

Las ideas de Newton desembocaban también en importantes conclusiones al aplicarlas a la refracción de la luz. La figura 15 intenta explicar la refracción estudiando el movimiento de una pelota de tenis. Debido a que la velocidad de la pelota es diferente en el agua que en el aire, la dirección de su movimiento cambia al atravesar la superficie; esto es, se refracta. Y se puede demostrar que si la velocidad en el agua es menor que en el aire el ángulo de refracción r' es mayor que el de incidencia i, como aparece en esa figura. Pero en la refracción de la luz ocurre precisamente lo contrario, el ángulo de refracción es menor que el de incidencia al pasar del aire al agua, o al pasar a cualquier otro medio más denso como, por ejemplo, el vidrio. Es, entonces, inevitable concluir que, si estuviera compuesta por partículas, la luz sería más rápida en los medios más densos. En particular, debería ser más rápida en cualquier medio transparente que en el vacío. En tiempos de Newton (1642-1727) sólo era posible medir la velocidad de la luz por medios astronómicos y de ninguna manera en un laboratorio, como hubiera sido necesario para medirla en agua, o en vidrio, y comparar este valor con el ya conocido para el vacío. Por este camino, pues, no fue posible adentrarse en el conocimiento de la naturaleza de los rayos luminosos por muchos años.

 

Ley de reflexión de la luz

 

Figura 15. La velocidad de una pelota de tenis disminuye y la dirección de su movimiento se acerca a la superficie al entrar al agua. La luz, por el contrario, al entrar al agua se aleja de la superficie. De esto se deduce que, si la luz estuviera formada por partículas, éstas se moverían más rápidamente en agua que en aire.

PRISMA

Sistema óptico, formado por uno o varios cristales de forma prismática, que tiene varios usos en astronomía: dispersión de la luz en espectroscopia, aplicaciones de la interferometría, de la polarimetría, etc. Cada lado del polígono de una base forma una arista de base con la cara correspondiente; dos caras adyacentes forman una arista lateral. Según el número de lados de la base se califica al prisma de triangular, cuadrangular, etc. Si el triángulo, el cuadrilátero, etc., son regulares se dice que el prisma también es regular; en el caso contrario, es irregular. Por otra parte, dícese que el prisma es recto cuando las aristas laterales son perpendiculares a las bases y, cuando no lo son, se tiene un prisma oblicuo. El área lateral de un prisma recto es igual al producto del perímetro de la base por la longitud de la arista lateral (altura del prisma). El área lateral del prisma oblicuo se halla de la misma manera, aunque considerando el perímetro de una sección perpendicular a su eje. El volumen de un prisma es igual al producto del área de su base por su altura o del área de la sección recta por la longitud de la arista lateral. Dase el nombre de prisma truncado o tronco de prisma a cada uno de los sólidos que se obtienen al cortar un prisma por un plano que no sea paralelo a las bases. Todo rayo de luz monocromática que se propague por una sección principal experimenta dos refracciones y el rayo emergente es desviado, respecto al incidente, según un ángulo que depende del ángulo de incidencia, del ángulo del prisma y del índice de refracción de la materia que lo constituye. En el caso de una luz compuesta, la desviación de los rayos depende también de la longitud de onda de las radiaciones, lo cual permite utilizar el prisma para descomponer la luz blanca en las distintas radiaciones del espectro. Los prismas tienen numerosas aplicaciones en óptica. Además de descomponer la luz, como ya se ha indicado, también se emplean para desviarla, lo cual permite reducir las dimensiones de ciertos instrumentos o facilita su uso. Con este fin se recurre al prisma de reflexión total, cuya sección normal es un triángulo rectángulo e isósceles, en el cual, el rayo S es reflejado por la hipotenusa en I, en una dirección R perpendicular a SI.

Ley de reflexión de la luz

CASOS DE LOS ESPEJOS CÓNCAVOS

  • Caso: Ley de reflexión de la luz

  • En el primer caso, la imagen se ubica entre el infinito y el centro. Los dos rayos pasan por el foco y convergen entre el centro y el foco, donde se forma una imagen real, invertida y de menor tamaño que la inicial.

  • Caso: Ley de reflexión de la luz
    En el segundo caso, el objeto está ubicado sobre el centro. Aquí de nuevo los rayos se encuentran en el foco y convergen debajo del centro, dando una imagen real, invertida y de igual tamaño que el objeto.

  • Caso: Ley de reflexión de la luz
    En el tercer caso de los espejos cóncavos, el objeto se sitúa entre el centro y el foco. De nuevo los rayos notables pasan por el foco y se encuentran después del centro, dando una imagen real, invertida y de mayor tamaño que el objeto.

  • Caso: Ley de reflexión de la luz
    En el 4to caso como se puede ver, el objeto se ubica en el foco y los rayos notables no se intersectan. Por ende, no se produce imagen.

  • Caso: Ley de reflexión de la luz
    En el 5to caso los rayos notables convergen detrás del espejo, formando una imagen virtual y derecha.

  • ESPEJOS CONVEXOS

  • Caso: Ley de reflexión de la luz
    Claramente se puede apreciar que cuando el objeto está ubicado entre el infinito y el foco, se forma una imagen virtual, derecha y de menor tamaño.

  • Caso: Ley de reflexión de la luz
    Cuando la imagen se ubica sobre el centro, es un poco mayor que cuando se ubica entre el infinito y el centro, pero sigue siendo más pequeña que el objeto, virtual y derecha.

  • Caso: Ley de reflexión de la luz
    El objeto se encuentra entre el centro y el foco en el tercer caso. La imagen es un poco mayor que en el anterior caso, pero sigue siendo menor que el objeto. A su vez, sigue siendo virtual y derecha.

  • Caso: Ley de reflexión de la luz
    En el 4to caso es la misma historia, solo que el objeto está ubicado sobre el foco y que la imagen es un poco mayor que en el caso anterior.

  • Caso: Ley de reflexión de la luz
    En el 5to caso el objeto está entre el foco y el vértice, la imagen es de menor tamaño que el objeto, es virtual y derecha.

  • ESPECTROSCOPIO

    Instrumento óptico que se usa para producir y observar los espectros de la luz. El espectroscopio ordinario consta de una cámara central que contiene un prisma y de la cual parten tres brazos: el primero consiste en un anteojo que recoge los rayos luminosos a través de una rendija y los proyecta en haz paralelo sobre el prisma; el segundo brazo es otro anteojo por el que se observa el espectro (el ocular puede reemplazarse por un aparato fotográfico, con lo cual se obtiene un espectrógrafo); en cuanto al tercer brazo es un dispositivo micrométrico con una escala que, reflejada por el prisma, es vista por el observador paralelamente al espectro y permite identificar las rayas por su longitud de onda. En ciertos espectroscopios el prisma es reemplazado por una retícula de difracción.

    LENTE

    Disco de cristal, plástico o cualquier otra sustancia refringente cuyas dos caras suelen tener un perfil esférico. Una lente puede hallarse constituída por cualquier líquido o sólido refringentes cuya masa está limitada por dos superficies esféricas de eje común. El radio de las dos esferas puede ser diferente y el de una de ellas puede incluso ser infinito, en cuyo caso la cara correspondiente de la lente es plana. La lente puede ser considerada como una superficie de prismas y entonces se comprende perfectamente cómo desvía los rayos luminosos. Las lentes cuyo espesor va menguando del centro hacia los bordes se llaman lentes convergentes, pues tienen la propiedad de desviar los rayos hacia el eje y de hacerlos converger en un punto mismo llamado foco; por el contrario, las lentes divergentes tienen los bordes más espesos que el centro y desvían los rayos hacia el exterior, alejándolos del eje óptico del lente. Las lentes convergentes sirven principalmente para obtener imágenes reales de los objetos, especialmente en fotografía; para proyectar la luz de un manantial puesto en su foco (faros, proyectores); como elemento de los sistemas amplificadores de imágenes ópticas (anteojos, microscopios); como lupa, para ver la imagen aumentada de un objeto colocado entre la lente y su foco; para corregir la vista de los ojos présbitas e hipermétropes. Las lentes divergentes se usan para corregir la vista de los miopes, para los oculares de los anteojos, gemelos, etc. El acoplamiento de una lente convergente y otra divergente permite corregir la aberración cromática.

    OBJETIVOS

    • Conocer en qué se basan los principios de reflexión y refracción.

    • Aprender a trabajar con los 5 casos de los espejos cóncavos.

    • Aprender a trabajar con los 5 casos de los espejos convexos.

    • Conocer qué es un prisma.

    • Conocer qué es un espectroscopio.

    • Conocer qué es un lente.

    • Conocer qué es un espejo.

    CONCLUSIONES

    • Cuando un haz de luz pasa a través de un prisma, se divide en los colores del arco iris.

    • El espectroscopio sirve para analizar los espectros de la luz.

    • Los lentes convexos son convergentes y los cóncavos son divergentes.

    • Aprendimos a trabajar con los diferentes casos de los espejos cóncavos y convexos.

    DEPARTAMENTO DE FISICA

    LABORATORIO SOBRE ESPEJOS Y LENTES

    GRADO:

    11-

    VILLAVICENCIO, 15 DE SEPTIEMBRE DEL 2002




    Descargar
    Enviado por:El remitente no desea revelar su nombre
    Idioma: castellano
    País: Colombia

    Te va a interesar