Investigación Operativa

Empresa. Variables. Restricción. Sensibilidad coeficientes

  • Enviado por: Axular
  • Idioma: castellano
  • País: España España
  • 5 páginas

publicidad
cursos destacados
Fundamentos en Gerencia de Proyectos
Fundamentos en Gerencia de Proyectos
La guía completa para administrar proyectos de cualquier tipo, usando las mejores prácticas y...
Ver más información

Marco Lógico para Proyectos Sociales
Marco Lógico para Proyectos Sociales
Curso práctico para aprender a formular o evaluar proyectos sociales usando la metodología de Matriz de Marco...
Ver más información

publicidad

INVESTIGACIÓN OPERATIVA

(2ª Entrega de ejercicios)

FLORANID S.A., es una empresa dedicada a la comercialización de abonos para plantas que emplea 3 tipos diferentes de ingredientes A, B y C, para conseguir 3 tipos de abonos 1, 2, y 3.

En cuanto a los ingredientes, su disponibilidad es limitada y sus costes los siguientes:

INGREDIENTE

CANTIDAD DISPONIBLE (kg)

COSTE (pts/kg)

A

4.000

1.300

B

6.000

1.500

C

2.000

1.000

El abono 1 se vende a 2.000 pts/kg, el abono 2 a 3.000 pts/kg y el abono 3 a 1500 pts/kg.

Además de lo anterior, los ingredientes han de mezclarse en proporciones específicas para asegurar una combinación adecuada:

Para el abono 1, no menos del 25 % de A y no más del 40 % de C; para el abono 2, no menos del 30 % de A, no menos del 20 % ni más del 30 % de B y no más del 15 % de C; y para el abono 3, no menos del 35 % de B.

Con todos los datos que FLORANID S.A. nos ha facilitado, nos piden que determinemos cuánta cantidad de cada tipo de abono hay que producir de forma que se maximice el beneficio de la compañía.

Así pues, con los datos facilitados, podemos construir un primer esquema que nos permitirá desarrollar el modelo de programación lineal para la resolución del problema:

INGREDIENTES

ABONOS

CANTIDAD DISPONIBLE (kg)

COSTE (pts/kg)

1

2

3

A

X11

X12

X13

4000

1300

B

X21

X22

X23

6000

1500

C

X31

X32

X33

2000

1000

VARIABLES DE DECISIÓN

Xij : cantidad de ingrediente del tipo i para cada tipo de abono j.

RESTRICCIONES

X11 + X12 + X13 " 4000

X21 + X22 + X23 " 6000 Restricciones de disponibilidad

X31 + X32 + X33 " 2000

0,75X11 - 0,25X21 - 0,25X31 " 0

0,6X31 - 0,4X11 - 0,4X21 " 0

0,7X12 - 0,3X22 - 0,3X32 " 0

0,8X22 - 0,2X12 - 0,2X32 " 0 Restricciones específicas de la mezcla

0,7X22 - 0,3X12 - 0,3X32 " 0

0,85X32 - 0,15X22 - 0,15X12 " 0

0,65X23 - 0,35X13 - 0,35X33 " 0

FUNCIÓN OBJETIVO

Bº = Ingresos - Gastos

Abono 1:

2000(X11 + X21 + X31) - 1300X11 - 1500X21 - 1000X31 =

= 700X11 + 500X21 + 1000X31

Abono 2:

3000(X12 + X22 + X32) - 1300X12 - 1500X22 - 1000X32 =

= 1700X12 + 1500X22 + 2000X32

Abono 3:

1500(X13 + X23 + X33) - 1300X13 - 1500X23 - 1000X33 =

= 200X13 + 500X33

Max (700X11 + 1700X12 + 200X13 + 500X21 + 1500X22 + 1000X31 + 2000X32 + 500X33)

Así pues, una vez definidas las variables de decisión, la función objetivo y las restricciones sujetas a ella, hemos introducido los datos en el programa QSB para proceder a su resolución. Por tanto, en el siguiente cuadro se muestra el resumen de la solución óptima hallada a través de QSB, y en la siguiente página presentamos el último cuadro del SIMPLEX.

SOLUCIÓN ÓPTIMA

X11 = 0

S1 = 0

X12 = 4000

S2 = 3328

X13 = 0

S3 = 0

X21 = 0

S4 = 0

X22 = 2182

S5 = 0

X23 = 490

S6 = 1818

X31 = 0

S7 = 727

X32 = 1091

S8 = 0

X33 = 909

S9 = 0

Z = 12700000

S10 = 0

En este cuadro se destaca principalmente la presencia de 10 variables de holgura (S), cada una de las cuales hace referencia a cada una de las restricciones que condicionan a la función objetivo.

Por tanto, puesto que ya sabemos que una variable básica es aquella cuya solución óptima es diferente de cero, podríamos clasificar las variables de la solución de la siguiente forma:

Variables básicas: X12 , X22 , X23 , X32 , X33 , S2 , S6 y S7 .

Variables no básicas: X11 , X13 , X21 , X31 , S1 , S3 , S4 , S5 , S8 , S9 , y S10 .

Así pues, tal y como se ve reflejado en la solución del modelo de programación lineal que hemos definido, estas serían las combinaciones de ingredientes y las cantidades de abono producidas que nos permiten maximizar el beneficio:

Abono 1:

No utilizamos ningún ingrediente para conseguir este tipo de abono, por lo que no vamos a producir nada de él.

Abono 2:

Para conseguir este tipo de abono emplearemos 4000 kg del ingrediente A, 2182 kg del ingrediente B y 1091 kg del ingrediente C por lo que vamos a producir y vender 7273 kg del abono tipo 1.

Abono 3:

Para producir este tipo de abono emplearemos 490 kg del ingrediente B y 909 kg del ingrediente C, sin utilizar nada del ingrediente A, a partir de los cuales produciremos y venderemos 1399 kg del abono tipo 3.

ANÁLISIS DE LA SENSIBILIDAD DE COEFICIENTES

Para realizar este apartado, hemos elegido el coeficiente de la variable X33 en la función objetivo (P33), por lo que vamos a calcular el intervalo de sensibilidad de este coeficiente y mostrar que es lo que ocurriría si dicho coeficiente aumentase en 100:

a) Intervalo de sensibilidad

Como ya hemos dicho anteriormente, las variables no básicas son X11 , X13 , X21 , X31 , S1 , S3 , S4 , S5 , S8 , S9 y S10 , por lo que:

P33 P33 + P33

(Z11 - P11)' = 727,27 - 0,27P33 " 0 P33 " 2692

(Z13 - P13)' = 2727 - 0.27P33 " 0 P33 " 10100

(Z21 - P21)' = 0 - 0P33 " 0 indeterminado

(Z31 - P31)' = 0,000028 + 1P33 " 0 P33 " - 0,000028

(ZS1 - PS1)' = 2927 - 0,27P33 " 0 P33 " 10840

(ZS3 - PS3)' = 500 + 1P33 " 0 P33 " - 500

(ZS4 - PS4)' = 2000 + OP33 " 0 P33 " - "

(ZS5 - PS5)' = 0 + 0P33 " 0 indeterminado

(ZS8 - PS8)' = 2727 - 0,27P33 " 0 P33 " 10100

(ZS9 - PS9)' = 2727 - 1,27P33 " 0 P33 " 2147,24

(ZS10 - PS10)' = 0 + 0P33 " 0 indeterminado

Así pues, el intervalo de sensibilidad para el coeficiente P33 será:

- 0,000028 " P33 " 2147,24

499,99 " P33 " 2647,24

Ahora queremos saber que es lo que ocurriría si P33 = 100. El coeficiente P33 pasaría de 500 a 600, y si nos fijamos en el intervalo de sensibilidad que acabamos de calcular, vemos que 600 pertenece al intervalo, por lo que:

  • las variables no cambian

  • las cantidades no cambian

  • la solución (Z) cambia

Puesto que sabemos que la solución (Z) va a cambiar, querremos saber en cuanto va a variar, por lo que volveremos a calcular dicho valor en la función objetivo teniendo en cuenta el nuevo coeficiente P33 = 600 y manteniendo el resto constante:

1700 * 4000 + 2182 * 1500 + 1091 * 2000 + 909 * 600 = 12.800.400 = Z'

Por lo que el beneficio máximo aumenta en 12800400 - 12700000 = 100.400 = Z

ANÁLISIS DE LA SENSIBILIDAD DE TÉRMINOS INDEPENDIENTES

Para realizar el análisis de la sensibilidad de un término independiente en una restricción, nos vamos a fijar en lo que pasa con el término independiente de la primera restricción del modelo (B1) y vamos ver qué es lo que pasaría si aumentara en 100.

B1 = 4000 B1 = 100 B1' = 4100

Es una restricción del tipo ("), por lo que la fórmula para calcular el intervalo de sensibilidad tendrá la siguiente forma:

Max { - / + } " B1 " Min { - / - }

Número de restricción i = 1

N + 1 = 10

Número de restricciones k = 1,2,3,4,5,6,7,8,9,10

  • a1,10 = - 0,39 b1 = 3328,67

  • a2,10 = 0 b2 = 0

  • a3,10 = - 0,1468 b3 = 489,51

  • a4,10 = 0,45 b4 = 1818,18

  • a5,10 = 0 b5 = 0

  • a6,10 = 0,27 b6 = 1090,91

  • a7,10 = 1 b7 = 4000

  • a8,10 = 0,18 b8 = 727,273

  • a9,10 = 0,54 b9 = 2181,82

  • a10,10 = - 0,27 b10 = 909,091

Max {-1818,18 / 0,45 , -1090,91 / 0,27 , -4000 / 1 , -727,273 / 0,18 , -2181,82 / 0,54}

Min {-3328 / -0,39 , -489,51 / -0,1468 , -909,091 / -0,27}

Por tanto, una vez calculados los valores máximos y mínimos, nos encontraremos con el siguiente intervalo de sensibilidad para el término independiente B1:

- 4000 " B1 " 3334,5

0 " B1 " 7334,5

Ahora queremos saber que es lo que pasaría si B1 = 100 ; B1' = 4100. Según el intervalo de sensibilidad que acabamos de calcular, este nuevo valor de 4100 pertenece al intervalo de sensibilidad, por lo que:

  • Variables no cambian

  • Cantidades cambian

  • Solución (Z) cambia

Para calcular en cuánto van a variar las cantidades utilizaremos la siguiente fórmula:

X' = X + (BI) * An + I

3328,67 -0,398 3288,87 S2

0 0 0 X21

489,51 -0,146 474,91 X23

1218,18 0,45 1263,18 S6

X' = 0 + 100 0 = 0 S5

1090,91 0,27 117,91 X32

4000 1 4100 X12

727,273 0,18 745,273 S7

2181,82 0,54 2236,82 X22

909,091 -0,27 882,091 X33

Una vez que ya hemos calculado las nuevas cantidades para las variables de la solución, vamos a calcular la nueva solución (Z) para ver en cuanto variará tras haber aumentado el término independiente B1 en 100 unidades.

Z' = 1700 * 4100 + 1500 * 2236,82 + 2000 * 117,91 + 500 * 882,091

Z' = 6970000 + 3355230 + 235820 + 441045,5 = 11.002.095,5 = Z'

Z' = 11.002.095,5 - 12.700.000 = -1.697.904,5

Por lo tanto, un aumento de 100 unidades en el término independiente de la primera restricción B1 , causa un descenso del beneficio en la solución óptima de 1.697.904,5 pts. Esta variación solo se ha dado en las cantidades de las variables y consecuentemente en el beneficio debido a que la variación de B1 se encuentra dentro del intervalo de sensibilidad. En cambio, si no hubiera pertenecido al intervalo de sensibilidad, variaría toda la solución (variables, cantidades y beneficio) y habría que volver a calcular todos los cuadros del SIMPLEX hasta llegar a una solución óptima.

Investigación Operativa 2ª Entrega