Investigación de operaciones

Control. Eficacia. Eficiencia. Análisis. Metodología. Competitividad. Negocios. Gobierno. Matemáticas

  • Enviado por: El remitente no desea revelar su nombre
  • Idioma: castellano
  • País: Venezuela Venezuela
  • 8 páginas
publicidad
  • Investigación de Operaciones

Segun churchman, ackoff y arnoff: la investigación de operaciones es la aplicación, por grupos interdisciplinarios, del método científico a problemas relacionados con el control de las organizaciones o sistemas (hombre-máquina), a fin de que se produzcan soluciones que mejor sirvan a los objetivos de la organización.

De ésta definición se pueden destacar los siguientes conceptos:

1. Una organización es un sistema formado por componentes que se interaccionan, unas de estas interacciones pueden ser controladas y otras no.

2. En un sistema la información es una parte fundamental, ya que entre las componentes fluye información que ocasiona la interacción entre ellas. También dentro de la estructura de los sistemas se encuentran recursos que generan interacciones. Los objetivos de la organización se refieren a la eficacia y eficiencia con que las componentes pueden controlarse, el control es un mecanismo de autocorrección del sistema que permite evaluar los resultados en términos de los objetivos establecidos.

3. La complejidad de los problemas que se presentan en las organizaciones ya no encajan en una sola disciplina del conocimiento, se han convertido en multidisciplinario por lo cual para su análisis y solución se requieren grupos compuestos por especialistas de diferentes áreas del conocimiento que logran comunicarse con un lenguaje común.

4. La investigación de operaciones es la aplicación de la metodología científica a través modelos matemáticos, primero para representar al problema y luego para resolverlo. La definición de la sociedad de investigación de operaciones de la Gran Bretaña es la siguiente:

La investigación de operaciones es el ataque de la ciencia moderna a los complejos problemas que surgen en la dirección y en la administración de grandes sistemas de hombres, máquinas, materiales y dinero, en la industria, en los negocios, en el gobierno y en la defensa. Su actitud diferencial consiste en desarrollar un modelo científico del sistema tal, que incorpore valoraciones de factores como el azar y el riesgo y mediante el cual se predigan y comparen los resultados de decisiones, estrategias o controles alternativos. Su propósito es el de ayudar a la gerencia a determinar científicamente sus políticas y acciones.

  • Historia de la Investigacion de Operaciones

La toma de decisiones es un proceso que se inicia cuando una persona observa un problema y determina que es necesario resolverlo procediendo a definirlo, a formular un objetivo, reconocer las limitaciones o restricciones, a generar alternativas de solución y evaluarlas hasta seleccionar la que le parece mejor, este proceso puede se cualitativo o cuantitativo.

El enfoque cualitativo se basa en la experiencia y el juicio personal, las habilidades necesarias en este enfoque son inherentes en la persona y aumentan con la práctica. En muchas ocasiones este proceso basta para tomar buenas decisiones. El enfoque cuantitativo requiere habilidades que se obtienen del estudio de herramientas matemáticas que le permitan a la persona mejorar su efectividad en la toma de decisiones. Este enfoque es útil cuando no se tiene experiencia con problemas similares o cuando el problema es tan complejo o importante que requiere de un análisis exhaustivo para tener mayor posibilidad de elegir la mejor solución.La investigación de operaciones proporciona a los tomadores de decisiones bases cuantitativas para seleccionar las mejores decisiones y permite elevar su habilidad para hacer planes a futuro.

En el ambiente socioeconómico actual altamente competitivo y complejo, los métodos tradicionales de toma de decisiones se han vuelto inoperantes e inadmisibles ya que los responsables de dirigir las actividades de las empresas e instituciones se enfrentan a situaciones complicadas y cambiantes con rapidez que requieren de soluciones creativas y prácticas apoyadas en una base cuantitativa sólida.En organizaciones grandes se hace necesario que el tomador de decisiones tenga un conocimiento básico de las herramientas cuantitativas que utilizan los especialistas para poder trabajar en forma estrecha con ellos y ser receptivos a las soluciones y recomendaciones que se le presenten.

En organizaciones pequeñas puede darse que el tomador de decisiones domine las herramientas cuantitativas y él mismo las aplique para apoyarse en ellas y así tomar sus decisiones.

Desde al advenimiento de la Revolución Industrial, el mundo ha sido testigo de un crecimiento sin precedentes en el tamaño y la complejidad de las organizaciones. Los pequeños talleres artesanales se convirtieron en las corporaciones actuales de miles de millones de pesos. Una parte integral de este cambio revolucionario fue el gran aumento en la división del trabajo y en la separación de las responsabilidades administrativas en estas organizaciones. Los resultados han sido espectaculares. Sin embargo, junto con los beneficios, el aumento en el grado de especialización creo nuevos problemas que ocurren hasta la fecha en muchas empresas. Uno de estos problemas es las tendencia de muchas de las componentes de una organización a convertirse en imperios relativamente autónomos, con sus propias metas y sistemas de valores, perdiendo con esto la visión de la forma en que encajan sus actividades y objetivos con los de toda la organización. Lo que es mejor para una componente, puede ir en detrimento de otra, de manera que pueden terminar trabajando con objetivos opuestos. Un problema relacionado con esto es que, conforme la complejidad y la especialización crecen, se vuelve más difícil asignar los recursos disponibles a las diferentes actividades de la manera más eficaz para la organización como un todo. Este tipo de problemas, y la necesidad de encontrar la mejor forma de resolverlos, proporcionaron el ambiente adecuado para el surgimiento de la Investigación de Operaciones (IO).

Las raíces de la investigación de operaciones se remontan a muchas décadas, cuando se hicieron los primeros intentos para emplear el método científico en la administración de una empresa. Sin embargo, el inicio de la actividad llamada investigación de operaciones, casi siempre se atribuye a los servicios militares prestados a principios de la segunda guerra mundial. Debido a los esfuerzos bélicos, existía una necesidad urgente de asignar recursos escasos a las distintas operaciones militares y a las actividades dentro de cada operación, en la forma más efectiva. Por esto, las administraciones militares americana e inglesa hicieron un llamado a un gran número de científicos para que aplicaran el método científico a éste y a otros problemas estratégicos y tácticos. De hecho, se les pidió que hicieran investigación sobre operaciones (militares). Estos equipos de científicos fueron los primeros equipos de IO. Con el desarrollo de métodos efectivos para el uso del nuevo radar, estos equipos contribuyeron al triunfo del combate aéreo inglés. A través de sus investigaciones para mejorar el manejo de las operaciones antisubmarinas y de protección, jugaron también un papel importante en la victoria de la batalla del Atlántico Norte. Esfuerzos similares fueron de gran ayuda en a isla de campaña en el pacífico.

Al terminar la guerra, el éxito de la investigación de operaciones en las actividades bélicas generó un gran interés en sus aplicaciones fuera del campo militar. Como la explosión industrial seguía su curso, los problemas causados por el aumento en la complejidad y especialización dentro de las organizaciones pasaron de nuevo a primer plano. Comenzó a ser evidente para un gran número de personas, incluyendo a los consultores industriales que habían trabajado con o para los equipos de IO durante la guerra, que estos problemas eran básicamente los mismos que los enfrentados por la milicia, pero en un contexto diferente. Cuando comenzó la década de 1950, estos individuos habían introducido el uso de la investigación de operaciones en la industria, los negocios y el gobierno. Desde entonces, esta disciplina se ha desarrollado con rapidez.

Se pueden identificar por lo menos otros dos factores que jugaron un papel importante en el desarrollo de la investigación de operaciones durante este período. Uno es el gran progreso que ya se había hecho en el mejoramiento de las técnicas disponibles en esta área. Después de la guerra, muchos científicos que habían participado en los equipos de IO o que tenían información sobre este trabajo, se encontraban motivados a buscar resultados sustanciales en este campo; de esto resultaron avances importantes.

Un ejemplo sobresaliente es el método simplex para resolver problemas de programación lineal, desarrollado en 1947 por George Dantzing. Muchas de las herramientas características de la investigación de operaciones, como programación lineal, programación dinámica, líneas de espera y teoría de inventarios, fueron desarrolladas casi por completo antes del término de la década de 1950.

Un segundo factor que dio ímpetu al desarrollo de este campo fue el advenimiento de la computadoras. Para manejar de una manera efectiva los complejos problemas inherentes a esta disciplina, por lo general se requiere un gran número de cálculos.

Llevarlos a cabo a mano puede resultar casi imposible. Por lo tanto, el desarrollo de la computadora electrónica digital, con su capacidad para realizar cálculos aritméticos, miles o tal vez millones de veces más rápido que los seres humanos, fue una gran ayuda para la investigación de operaciones. Un avance más tuvo lugar en la década de 1980 con el desarrollo de las computadoras personales cada vez más rápidas, acompañado de buenos paquetes de software para resolver problemas de IO, esto puso las técnicas al alcance de un gran número de personas. Hoy en día, literalmente millones de individuos tiene acceso a estos paquetes. En consecuencia, por rutina, se usa toda una gama e computadoras, desde las grandes hasta las portátiles, para resolver problemas de investigación de operaciones.

  • Naturaleza de la Investigacion de Operaciones

La investigación de operaciones permite el análisis de la toma de decisiones teniendo en cuenta la escasez de recursos, para determinar cómo se puede optimizar un objetivo definido, como la maximización de los beneficios o la minimización de costes.

Al principio, la investigación de operaciones se refería a sistemas existentes de armas y a través del análisis, típicamente matemático, se buscaban las políticas óptimas para la utilización de esos sistemas. Hoy día, la investigación de operaciones todavía realiza esta función dentro de la esfera militar; sin embargo, lo que es mucho más importante, ahora se analizan las necesidades del sistema de operación con modelos matemáticos, y se diseña un sistema (o sistemas) de operación que ofrezca la capacidad óptima.

Es importante resaltar que la investigación de operaciones no es una colección de formulas o algoritmos aplicables sistemáticamente a unas situaciones determinadas. Si se cae en este error, será muy difícil captar en condiciones reales los problemas que puedan deducirse de los múltiples aspectos de esta disciplina, la cual busca adaptarse a las condiciones variantes y particulares de los diferentes sistemas que puede afrontar, usando una lógica y métodos de solución muy diferentes a problemas similares mas no iguales.

  • Tipos de modelos matematicos

Según la información de entrada

Con respecto a la función del origen de la información utilizada para construir los modelos pueden clasificarse de otras formas. Podemos distinguir entre modelos heurísticos y modelos empíricos:

  • Modelos heurísticos (del griego euriskein 'hallar, inventar'). Son los que están basados en las explicaciones sobre las causas o mecanismos naturales que dan lugar al fenómeno estudiado.
  • Modelos empíricos (del griego empeirikos relativo a la 'experiencia'). Son los que utilizan las observaciones directas o los resultados de experimentos del fenómeno estudiado.

Según el tipo de representación

Además los modelos matemáticos encuentran distintas denominaciones en sus diversas aplicaciones. Una posible clasificación puede atender a si pretenden hacer predicciones de tipo cualitativo o pretende cuantificar aspectos del sistema que se está modelizando:

  • Modelos cualitativos o conceptuales, estos pueden usar figuras, gráficos o descripciones causales, en general se contentan con predecir si el estado del sistema irá en determinada dirección o si aumentará o disminuirá alguna magnitud, sin importar exactamente la magnitud concreta de la mayoría de aspectos.
  • Modelos cuantitativos o numéricos, usan números para representar aspectos del sistema modelizado, y generalmente incluyen fórmulas y algoritmos matemáticos más o menos complejos que relacionan los valores numéricos. El cálculo con los mismos permite representar el proceso físico o los cambios cuantitativos del sistema modelado.

Según la aleatoriedad

Otra clasificación independiente de la anterior, según si a una entrada o situación inicial concreta pueden corresponder o no diversas salidas o resultados, en este caso los modelos se clasifican en:

  • Determinista. Se conoce de manera puntual la forma del resultado ya que no hay incertidumbre. Además, los datos utilizados para alimentar el modelo son completamente conocidos y determinados.
  • Estocástico. Probabilístico, que no se conoce el resultado esperado, sino su probabilidad y existe por tanto incertidumbre.

Clasificación según su aplicación u objetivo

Por su uso suelen utilizarse en las siguientes tres áreas, sin embargo existen muchas otras como la de finanzas, ciencias etc.

  • Modelo de simulación o descriptivo, de situaciones medibles de manera precisa o aleatoria, por ejemplo con aspectos de programación líneal cuando es de manera precisa, y probabilística o heurística cuando es aleatorio. Este tipo de modelos pretende predecir qué sucede en una situación concreta dada.
  • Modelo de optimización. Para determinar el punto exacto para resolver alguna problemática administrativa, de producción, o cualquier otra situación. Cuando la optimización es entera o no lineal, combinada, se refiere a modelos matemáticos poco predecibles, pero que pueden acoplarse a alguna alternativa existente y aproximada en su cuantificación. Este tipo de modelos requiere comparar diversas condiciones, casos o posibles valores de un parámetro y ver cual de ellos resulta óptimo según el criterio elegido.
  • Modelo de control. Para saber con precisión como está algo en una organización, investigación, área de operación, etc. Este modelo pretende ayudar a decidir qué nuevas medidas, variables o qué parámetros deben ajustarse para lograr un resultado o estado concreto del sistema modelado.
  • Modelos matematicos

Un modelo matemático es uno de los tipos de modelos científicos que emplea algún tipo de formulismo matemático para expresar relaciones, proposiciones sustantivas de hechos, variables, parámetros, entidades y relaciones entre variables y/o entidades u operaciones, para estudiar comportamientos de sistemas complejos ante situaciones difíciles de observar en la realidad. El término modelización matemática es utilizado también en diseño gráfico cuando se habla de modelos geométricos de los objetos en dos (2D) o tres dimensiones (3D).

El significado de modelo matemático en matemática fundamental, sin embargo es algo diferente. En concreto en matemáticas se trabajan con modelos formales. Un modelo formal para una cierta teoría matemática es un conjunto sobre el que se han definido un conjunto de relaciones unarias, binarias y trinarias, que satisface las proposiciones derivadas del conjunto de axiomas de la teoría. La rama de la matemática que se encarga de estudiar sistemáticamente las propiedades de los modelos es la teoría de modelos.

El proceso para elaborar un modelo matemático es el siguiente:

  1. Encontrar un problema del mundo real
  2. Formular un modelo matemático acerca del problema, identificando variables (dependientes e independientes) y estableciendo hipótesis lo suficientemente simples para tratarse de manera matemática.
  3. Aplicar los conocimientos matemáticos que se posee para llegar a conclusiones matemáticas.
  4. Comparar los datos obtenidos como predicciones con datos reales. Si los datos son diferentes, se reinicia el proceso.

Es importante mencionar que un modelo matemático no es completamente exacto con problemas de la vida real, de hecho, se trata de una idealización.

Hay una gran cantidad de funciones que representan relaciones observadas en el mundo real; las cuales se analizarán en los párrafos siguientes, tanto algebraicamente como gráficamente.

  • Areas de aplicación

Las areas de aplicación para los modelos matematicos, son inmensos pues en casi todas las ciencias tienen aplicación. Destacandose entre estos el campo de la ingenieria, con el cual tenemos contacto a diario, el simple hecho de la forma de un avio constituye un modelo matematico, la forma de un carro es a su vez un modelo matematico, simulaciones geologicas, hidrologicas, climaticas y asi sucesivamente podremos encontrar las multiples aplicaciones de los modelos matematicos.

  • Construccion de modelos matematicos

En muchos casos la construcción o creación de modelos matemáticos útiles sigue una serie de fases bien determindas:

  1. Identificación de un problema o situación compleja que necesita ser simulada, optimizada o controlada y por tanto requeriría un modelo matemático predictivo.
  2. Elección del tipo de modelo, esto requiere precisar qué tipo de respuesta u output pretende obtenerse, cuales son los datos de entrada o factores relevantes, y para qué pretende usarse el modelo. Esta elección debe ser suficientemente simple como para permitir un tratamiento matemático asequible con los recursos disponibles. Esta fase requiere además identificar el mayor número de datos fidedignos, rotular y clasificar las incógnitas (variables independientes y dependientes) y establecer consideraciones, físicas, químicas, geométricas, etc. que representen adecuadamente el fenómeno en estudio.
  3. Formalización del modelo en la que se detallarán qué forma tienen los datos de entrada, qué tipo de herramienta matemática se usará, como se adaptan a la información previa existente. También podría incluir la confección de algoritmos, ensamblaje de archivos informáticos, etc, etc. En esta fase posiblemente se introduzcan también simplificaciones suficientes para que el problema matemático de modelización sea tratable computacionalmente.
  4. Comparación de resultados los resultados obtenidos como predicciones necesitan ser comparados con los hechos observados para ver si el modelo está prediciendo bien. Si los resultados no se ajustan bien, frecuentemente se vuelve a la fase 1.

Es importante mencionar que la inmensa mayoría de modelos matemáticos no son exactos y tienen un alto grado de idealización y simplificación, ya que una modelización muy exacta puede ser más complicada de tratar de una simplificación conveniente y por tanto menos útil. Es importante recordar que el mecanismo con que se desarrolla un modelo matemático repercute en el desarrollo de otras técnicas de conocimientos enfocadas al área sociocultural.