Estructuras metálicas

Edificación. Construcción. Normativa. Acero. Ensayos. Perfiles. Seguridad. Hormigón. Ponderación. Agotamiento

  • Enviado por: José Vázquez
  • Idioma: castellano
  • País: España España
  • 12 páginas
publicidad
cursos destacados
Química General
Química General
En este curso de Química General, aprenderemos los conceptos fundamentales de la “Ciencia...
Ver más información

Ejercicios resueltos de Aritmética
Ejercicios resueltos de Aritmética
Serie de ejercicios resueltos de Artimética Básica.

Este curso va ligado al curso actual de...
Ver más información

publicidad

NORMATIVAS DE LA ASIGNATURA.

  • ESTRUCTURAS METÁLICAS. EA-95. Compendio de las antiguas normas (MV-102 a MV-111)

  • ESTRUCTURAS DE HORMIGÓN. EHE-98. Sustituye a la EH-91

  • NORMAS BÁSICAS DE LA EDIFICACIÓN (NBE)

  • EA-95. Estructuras de acero en edificación.

  • AE-98. Acciones en la edificación.

  • CPI-96. Condiciones de protección contra incendios.

  • CT-79. Condiciones térmicas de los edificios.

  • NORMAS TECNOLÓGICAS DE LA EDIFICACIÓN (NTE)

  • ECG-88. Cargas gravitatorias.

  • ECR-88. Cargas de retracción.

  • ECS-88. Cargas sísmicas.

  • ECT-88. Cargas térmicas.

  • ECV-88. Cargas de viento.

  • NORMAS PARA CONSTRUCCIÓN SISMORRESISTENTE.

  • PDS-1-74.

  • ECSE-94.

  • NORMAS ESPAÑOLAS (UNE)

  • 14.XXX. Soldaduras en estructuras metálicas.

  • 76.XXX. Estructuras metálicas.

CAPÍTULO I. EL ACERO EN CONSTRUCCIÓN.

Es un producto férreo cuyo contenido en Carbono es igual o inferior al 2%. Cuando el contenido en Carbono es superior al 2% hablamos de fundiciones y tiene otras características o propiedades. Nos vamos a referir al acero.

Sus características vienen recogidas en la EA-95 y en la UNE-36-080-73.

Las propiedades mecánicas de los aceros dependen de su composición química, del proceso de laminado y del tratamiento térmico que experimente. Estas propiedades son similares en tracción y compresión, y se determinarán por un ensayo de tracción.

ENSAYO DE TRACCIÓN.

Consiste en someter una probeta con una sección F0 y con una longitud inicial L0; L0=5,65Estructuras metálicas
; a un esfuerzo axil de tracción, creciente generalmente hasta la rotura y con una longitud final Lu (UNE 7010)

Las normas UNE las publica AENOR.

Este ensayo da lugar a un diagrama, que se llama tensión-deformación y tiene una forma.

Estructuras metálicas

Estructuras metálicas

3

E = tgEstructuras metálicas
= Estructuras metálicas

Estructuras metálicas
2

Estructuras metálicas
1.Zona elástica. Tramo lineal

2.Zona de deformación

  • 3.Zona de gran deformación

Estructuras metálicas

f = Tensión de fluencia.

r = Tensión de rotura. Consideramos r aunque la probeta rompa a una tensión menor p " 0.8*f

=

El alargamiento de la probeta lo mediremos como

Estructuras metálicas
= Estructuras metálicas

El valor típico que vamos a considerar es E = 2.1*106 Kp/cm2; como módulo de elasticidad transversal G = 8.1*105 Kp/cm2 y el coeficiente de Poisson que vale = 0.3

ENSAYO DE PLEGADO.

Sirve para conocer si la ductibilidad del material es adecuada, se define como el ángulo para el que aparece la primera grieta al realizar el doblado sobre una probeta.

t

Estructuras metálicas

6t

Estructuras metálicas
ángulo que forman las dos

partes rectas de la chapa

Tenemos la medida cuando aparece la primera grieta; en cualquier parte de la zona de lectura.

Este ensayo (UNE 7051) mide la utilidad, la capacidad de deformación de la chapa; que el acero se pueda doblar sin sufrir agrietamiento.

ENSAYO DE RESILIENCIA (UNE 7056)

Sirve para medir la fragilidad del acero; la capacidad para partirse cuando se le aplica una carga. La fragilidad es una característica contraria a la ductilidad, la capacidad para romperse sin apenas deformaciones.

Fabricamos una probeta de acero en la que practicamos una entalladura de 2mm.

Estructuras metálicas

A continuación se le aplica en la sección de entalladura una carga a través de un péndulo y el trabajo realizado por dicho péndulo dividido por la sección de la probeta expresa la resiliencia del acero. Cuanto más frágil sea el acero, menos le costará atravesar la sección.

ENSAYO DE FATIGA.

Es la solicitación de un acero a cargas de distinta intensidad (o signo) Son aceros que están sometidos a cargas variables y la tensión de rotura por fatiga es inferior a la tensión de rotura por tracción estática. Estos ensayos pueden ser tracción, de compresión, de flexión.

Los tipos de carga que se aplicarán, podrán ser alternativos (cuando aplicamos desde -Estructuras metálicas
a +Estructuras metálicas
); intermitentes (desde 0 a +Estructuras metálicas
o desde 0 a -Estructuras metálicas
); pulsatorio (-Estructuras metálicas
a -Estructuras metálicas
o +Estructuras metálicas
a +Estructuras metálicas
)

Cuando utilizamos uno de estos ensayos tendremos una curva tipo Wöhler.

Estructuras metálicas

Estructuras metálicas

N

Siempre son asintóticas horizontalmente y ese valor es la Estructuras metálicas
por fatiga.

CLASES DE ACEROS.

Según la norma EA-95, se definen las clases de acero por su tipo y la calidad según tabla 2.1.1 de dicha norma.

Estructuras metálicas
(Kg/cm2); es la tensión de rotura.

GRADO

TIPO b c d

A37 A37b A37c A37d

A42 A42b A42c A42d

A52 A52b A52c A52d

a utilizable en construcciones remachadas.

b utilizable en construcciones remachadas o soldadas y es la más habitual.

c utilizable para construcciones con alta exigencia de soldabilidad.

d utilizable para construcciones soldadas con exigencias especiales de resistencia.

El comercial más habitual es el A42b; la elección del acero depende según las características del proyecto y las posibilidades de compra en cada momento. En partes secundarias podremos hacer uso de un acero de menor resistencia.

PRODUCTOS LAMINADOS.

Para una estructura usamos aceros en una forma estandarizada; que nos ofrece el mercado y la más adecuada en cada momento.

Tenemos los productos laminados que recoge la norma española; vemos las características de cada uno.

PERFILES IPN o doble T.

Las uniones son redondeadas; tiene muy buena inercia respecto x y muy pequeña respecto a y. Su uso es muy recomendable.

Estructuras metálicas

PERFILES IPE.

Sus lados son rectos.

Estructuras metálicas

PERFILES HE.

Según sea la sección normal, ligera o pesada; se le denominará HEB, HEA o HEM. Es parecida a la anterior, pero de sección cuadrada.

Estructuras metálicas

PERFILES UPN.

Son muy utilizados para formar perfiles compuestos.

Estructuras metálicas

PERFILES L (angulares)

Sirven como elemento de unión; las dimensiones son iguales. Los LD tiene los lados desiguales.

Estructuras metálicas

PERFILES EN T.

Pueden tener los lados iguales o no; L1 y L2 pueden ser iguales o no.

Estructuras metálicas

Además de esto tenemos las siguientes secciones.

REDONDO.

Macizo circular el diámetro varía de 6 a 50 mm

Estructuras metálicas

CUADRADO.

Sección cuadrada maciza de lado a desde los 6 mm hasta los 50.

Estructuras metálicas

RECTANGULAR.

Cuando tenemos una sección rectangular a>500 mm, tendremos que la sección será fina, gruesa o media según el espesor e.

Estructuras metálicas

FINA....................e < 3 mm

MEDIA................3 < e < 4.75 mm

GRUESA..............e > 4.75 mm

CONDICIONES DE SEGURIDAD.

Se admite que la seguridad de una estructura es aceptable cuando mediante cálculos, por los métodos definidos en norma; y sometiendo la estructura a las acciones ponderadas establecidas en la combinación que resulta más desfavorable, se comprueba que la estructura, en su conjunto y cada uno de sus elementos son estáticamente estables y que las tensiones calculadas no sobrepasan la correspondiente condición de agotamiento.

En cuanto a la estabilidad, si tenemos que existen nudos no rígidos (articulaciones); habrá que disponer en la misma recuadros arriostrados por triangulaciones o por macizado con muro (este es, impedir que la estructura tenga movimiento horizontal)

Se admite que la deformación de una estructura es aceptable cuando; mediante cálculos por los métodos definidos en la norma y sometiéndola a las acciones características establecidas en la combinación más favorable, se comprueba que las deformaciones calculadas no sobrepasen en ningún momento los límites de deformación prescritos.

En cuanto a los límites de deformación las flechas L son:

-vigas puente grúa.......................................................................................L/1000

-correas o viguetas de cubierta no visitable................................................L/250

-vigas de hasta 5 mts y viguetas que no soporten muros de fábrica...........L/300

-vigas de más de 5 mts, que no soporten muros.........................................L/400

-vigas y cargaderos (cargas de muros de fábrica y pilares)........................L/250

-ménsulas y muros de fábrica .....................................................................L/300

-cualquier otro elemento.............................................................................L/500

CLASIFICACIÓN DE LAS ACCIONES.

-Acciones características; valor característico de una acción es el que tiene la probabilidad de 0.05 (5%) de ser sobrepasado durante la ejecución y vida útil de la estructura o eventualmente en las pruebas de carga especificada.

-Acciones ponderadas; una acción ponderada es el producto de una acción característica por el coeficiente de ponderación () que le corresponde en la combinación de acciones en que se esté considerando.

A efectos de aplicación de coeficiente de ponderación; las acciones se clasifican en dos grupos.

  • Acciones constantes: Actúan o pueden estar durante largo período de tiempo o en todo momento, con valor fijo en posición o magnitud. Se incluyen en este tipo el peso propio, las cargas permanentes, el peso y el empuje del terreno, las acciones térmicas y los asientos de las cimentaciones.

  • Acciones variables: Se consideran las de uso o explotación, las sobrecargas de ejecución durante el período de montaje y construcción, las acciones del viento, la sobrecarga producida por la nieve y las acciones sísmicas.

  • Los valores característicos de las acciones que pueden provocar impacto; se multiplicarán por los siguientes valores (esto es, por el efecto dinámico)

    -Acumulación de personas a no ser que la norma contemple efecto dinámico...........................................................................................................1.5

    -Ascensores, montacargas o grúas eléctricas..............................................1.25

    -Grúas accionadas a mano..........................................................................1.1

    COEFICIENTES DE PONDERACIÓN.

    (TABLA 3.1.5. COEFICIENTES DE PONDERACIÓN)

    Coeficiente de ponderación si el efecto de la acción es:

    Hipótesis de la carga Clase de acción Desfavorable Favorable

    CASO I Acciones constantes 1.33 1.33 1.00

    Ia (1) Sobrecargas 1.33 1.50 0.00

    Viento 1.50 1.33 0.00

    Acciones constantes 1.33 1.00

    Ib Sobrecargas 1.50 0.00

    Nieve 1.50 0.00

    Acciones constantes 1.33 1.00

    Ic Viento 1.50 0.00

    Nieve 1.50 0.00

    CASO II Acciones constantes 1.33 1.00

    Sobrecargas 1.33 0.00

    Viento 1.33 0.00

    Nieve 1.33 0.00

    CASO III Acciones constantes 1.00 1.00

    Sobrecargas r(2) 0.00

    Viento 0.25(3) 0.00

    Nieve 0.50(4) 0.00

    Acciones sísmicas 1.00 0.00

    CASO I Estructuras metálicas
    Acciones constantes y combinación de dos acciones variables independientes.

    CASO II Estructuras metálicas
    Acciones constantes y combinación de tres acciones variables independientes.

    CASO III Estructuras metálicas
    Acciones constantes y combinación de acciones variables independientes, incluso las acciones sísmicas.

    (1) Para el efecto desfavorable se considerarán los valores de las dos columnas.

    (2) r es el coeficiente reductor para las sobrecargas, de valor:

    Azoteas, viviendas y hoteles (salvo locales de reunión): r = 0.50.

    Oficinas, comercios, calzadas y garajes: r = 0.60

    Hospitales, cárceles, edificios docentes, templos, edificios de reunión y espectáculos y salas de reunión de hoteles: r = 0.80.

    Almacenes: r = 1.

    (Tabla 4.5 de la norma sismorresistente PDS1-74 Parte A)

    (3) Sólo se considerará en construcciones en situación topográfica expuesta o muy expuesta (Norma Básica NBE AE-88)

    (4) Sólo se considerará en caso de lugares en los que la nieve permanece acumulada habitualmente más de treinta días seguidos, en el caso contrario el coeficiente será cero.

    CONDICIONES DE AGOTAMIENTO.

    Las relaciones de las tensiones normales y tangenciales; con las principales en un estado es el siguiente

    y

    Estructuras metálicas

    Estructuras metálicas

    Estructuras metálicas

    x

    Estructuras metálicas

    Estructuras metálicas

    Estructuras metálicas

    Estructuras metálicas

    Estructuras metálicas

    La norma como condición de agotamiento para un estado plano de tensión, tendremos que la condición de agotamiento será la siguiente Estructuras metálicas

    Estructuras metálicas

    Si en el Estado de Tensión Plano; tenemos las tensiones principales

    Estructuras metálicas

    Si tenemos un estado simple de tracción o compresión, tendremos Estructuras metálicas
    y en un estado de cortadura simple (Estructuras metálicas
    ); tendremos que

    Estructuras metálicas

    En un estado triple de tensión; tenemos

    Estructuras metálicas

    y conociendo las tensiones principales tenemos que Estructuras metálicas
    es igual a

    Estructuras metálicas

    En los casos de flexión simple o compuesta, que tenemos una tensión normal y una tangencial tendremos

    Estructuras metálicas

    Esta ecuación es muy habitual.

    12

    CAPÍTULO I.. EL ACERO EN CONSTRUCCIÓN.

    TECNOLOGÍA DE ESTRUCTURAS.