Energía hidráulica

Mecánica. Fuentes energéticas alternativas. Centrales hidroeléctricas y turbinas. Hidrodinámica. Teorema de Bernoulli

  • Enviado por: Koke
  • Idioma: castellano
  • País: Chile Chile
  • 9 páginas
publicidad
cursos destacados
Master en Facility Management (Chile)
Structuralia
El Facility Management (gestión y mantenimiento de activos inmobiliarios) es una de las disciplinas de mayor...
Solicita InformaciÓn

Técnico en Gestión de Empresas de Servicios Turísticos
Gesforem
¿Te sientes atraído por uno de las actividades económicas más importantes de la industria española? ¿Quieres ser...
Solicita InformaciÓn

publicidad

Energía Hidráulica______________________________________

Ya desde la antigüedad, se reconoció que el agua que fluye desde un nivel superior a otro inferior posee una determinada energía cinética susceptible de ser convertida en trabajo, como demuestran los miles de molinos que a lo largo de la historia fueron construyéndose a orillas de los ríos.

Energía hidráulica

Más recientemente, hace más de un siglo, se aprovecha la energía hidráulica para generar electricidad, y de hecho fue una de las primeras formas que se emplearon para producirla.
El aprovechamiento de la energía potencial del agua para producir energía eléctrica utilizable, constituye en esencia la energía hidroeléctrica. Es por tanto, un recurso renovable y autóctono. El conjunto de instalaciones e infraestructura para aprovechar este potencial se denomina central hidroeléctrica.

Hoy en día, con los problemas medioambientales, se ven las cosas desde otra perspectiva. Esto ha hecho que se vayan recuperando infraestructuras abandonadas dotándolas de nuevos equipos automatizados y turbinas de alto rendimiento. En consecuencia, el impacto ambiental no es más del que ya existía o por lo menos inferior al de una gran central. A estas instalaciones, con potencia inferior a 5.000KW se les denomina mini-hidráulicas.

Las minicentrales hidroeléctricas están condicionadas por las características del lugar de emplazamiento. La topografía del terreno influye en la obra civil y en la selección del tipo de máquina.

Centrales de aguas fluyentes____

Aquellas instalaciones que mediante una obra de toma, captan una parte del caudal del río y lo conducen hacia la central para su aprovechamiento, para después devolverlo al cauce del río.

Centrales de pie de presa____

Son los aprovechamientos hidroeléctricos que tienen la opción de almacenar las aportaciones de un río mediante un embalse. En estas centrales se regulan los caudales de salida para utilizarlos cuando se precisen

Centrales de canal de riego o abastecimiento___

Energía hidráulica

Se pueden distinguir dos tipos:

  • Con desnivel existente en el propio canal

Se aprovecha mediante la instalación de una tubería forzada, que conduce el agua a la central, devolviéndola posteriormente al curso normal del canal.

  • Con desnivel existente entre el canal y el curso de un río cercano.

En este caso la central se instala cercana al río y se aprovechan las aguas excedentes en el canal.

A la hora de realizar un proyecto de una minicentral hidroeléctrica y dependiendo del tipo por su emplazamiento, la determinación del caudal y la altura de salto determinará la potencia a instalar, así como, el tipo de mini-turbina.

Existen varios tipos de mini-turbinas

De reacción:

Que aprovecha la energía de presión del agua en energía cinética en el estator, tanto en la entrada como en la salida, estas aprovechan la altura disponible hasta el nivel de desagüe.

Kaplan:

Se componen básicamente de una cámara de entrada que puede ser abierta o cerrada, un distribuidor fijo, un rodete con cuatro o cinco palas fijas en forma de hélice de barco y un tubo de aspiración.

Energía hidráulica

Francis:

Caracterizada por que recibe el flujo de agua en dirección radial, orientándolo hacia la salida en dirección axial.

Energía hidráulica

Se compone de:

Un distribuidor que contiene una serie de álabes fijos o móviles que orientan el agua hacia el rodete. Un rodete formado por una corona de paletas fijas, torsionadas de forma que reciben el agua en dirección radial y lo orientan axialmente. Una cámara de entrada, que puede ser abierta o cerrada de forma espiral, para dar una componente radial al flujo de agua. Un tubo de aspiración o de salida de agua, que puede ser recto o acodado y se encarga de mantener la diferencia de presiones necesaria para el buen funcionamiento de la turbina.

De flujo cruzado: también conocida como de doble impulsión, constituida principalmente por un inyector de sección rectangular provisto de un álabe longitudinal que regula y orienta el caudal que entra en la turbina, y un rodete de forma cilíndrica, con múltiples palas dispuestas como generatrices y soldadas por los extremos a discos terminales.

El caudal que entra en la turbina es orientado por el álabe del inyector, hacia las palas del rodete, produciendo un primer impulso. Posteriormente, atraviesa el interior del rodete y proporciona un segundo impulso, al salir del mismo y caer por el tubo de aspiración.

De acción:

Que aprovecha la energía de presión del agua para convertirla en energía cinética en el estator, estas aprovechan la altura disponible hasta el eje de la turbina.

Pelton:

Consta de un disco circular que tiene montados en su periferia unas paletas en forma de doble cuchara y de un inyector que dirige y regula el chorro de agua que inciden sobre las cucharas, provocando el movimiento de giro de la turbina.

Energía hidráulica

La Hidráulica y su aplicación en la Física___________________

La hidráulica es la parte de la física que estudia la mecánica de los fluidos; analiza las leyes que rigen el movimiento de los líquidos y las técnicas para mejorar el aprovechamiento de las aguas; se divide en hidrostática (líquidos en reposo) y la hidrodinámica (líquido en movimiento).

Es la parte de la física que estudia líquidos en reposo. Tiene para su estudio las características de los líquidos que son: Viscosidad (Resistencia de un líquido a fluir), Tensión Superficial (Fuerza de atracción entre la moléculas de un líquido que permite se forme una finísima membrana plástica en la superficie de un líquido), Cohesión (Fuerza que mantiene unidad entre moléculas de una misma sustancia), Adherencia (Fuerza de atracción entre moléculas de sustancias diferentes), Capilaridad (Fenómeno que se presenta cuando existe contacto entre un líquido y una pared sólida, especialmente si se encuentran en recipientes tan delgados como el cabello, de ahí su nombre capilaridad).

Principio de Arquímides_________________________________

Todo cuerpo sumergido en un fluido parcial o completamente recibe el nombre de empuje ascendente originado por una fuerza igual al peso del fluido que desplaza. Se determinó matemáticamente como:

E = Pe* V donde E es empuje.

Prensa hidráulica_______________________________________

Una de las aplicaciones prácticas de Pascal se encuentra en la prensa hidráulica, mejor conocido como gato hidráulico el cual consiste en dos émbolos comunicados por un líquido que puede ser agua o aceite donde la presión ejercida en cada uno de los émbolos estará en función del área y la fuerza que se puede ejercer sobre cada émbolo pero logrando el equilibrio entre ambos, es decir:

Hidrodinámica__________________________________________

Es la parte de la hidráulica que estudia el comportamiento de los líquidos en movimiento y para ello considera: la velocidad, la presión, el flujo y el gasto del líquido.

En la hidrodinámica el teorema de Bernoulli que da origen o trata de la ley de la conservación de la energía que es importante ya que se refiere a la suma de energías cinética, potencial y de presión de los líquidos en movimiento con respecto de un punto determinado de tal manera que lo mismo sucederá en otro punto cualesquiera de un mismo líquido.

Las aplicaciones son: construcción de canales, puertos, cascos de barcos, hélices, ductos en general, etc.

Para facilitar el estudio de los líquidos se hacen siempre las siguientes consideraciones.

1).- los líquidos son completamente incompresibles.

2).- se considera despreciable la viscosidad, es decir, que no hay fuerza de rozamiento entre las diferentes capas del líquido y que no hay pérdidas de energía mecánica producida por la viscosidad.

3).- no hay resistencia cuando el líquido fluye a través de un conductor.

Gasto_________________________________________________

El gasto es el volumen de un líquido que atraviesa una sección de un conductor en un segundo. Al gasto, también se le denomina flujo y su símbolo es: Q =Av donde A= área del conductor y v = velocidad con que fluye. También al gasto se le denomina en algunas ocasiones rapidez o velocidad de flujo.

Ejemplo:

Una llave tiene una sección de 4cm2 y proporciona un volumen de 30L en un minuto. Calcular a que equivale el gasto y la velocidad del líquido.

Q = v/t = 30000 cm3/60 seg = 500 cm3/seg

V = Q/A = 500 cm3/seg/4cm2 = 125 cm/seg

Flujo__________________________________________________

El flujo se define como la cantidad de masa del líquido que fluye a través de una tubería en un segundo por lo tanto el flujo es: F = m/t

1.- F = kg/seg m = masa en kg T = tiempo en seg

2.- m = ρv

2 en 1 F = ρv/t F = ρQ

Algunos ejemplos de ejercicios:

1.- Un acueducto de 14 cm de diámetro interno surte agua a mi casa a través de tubos intermedios a tubo de la llave de mi lavabo de 1 cm de diámetro interno. Si la velocidad promedio en el tubo de la llave es de 3 cm/seg. Cuál será la velocidad promedio en el acueducto que causa esta velocidad.

Q1 =Q2

A1V1= A2V2 Ecuación de continuidad

153.93 V1 = .7853V2

V1 = .01530 cm/seg

2.- Por una tubería de 3.81 cm de diámetro circula agua a una velocidad de 3 m /seg. En una parte de la tubería hay un estrechamiento y el diámetro es de 1 pulgada. Que velocidad lleva en ese punto?

A= 5.98 Q1=Q2

V = .003cm/seg 5.98*.003 = 3.98 V2

A2= 3.98 4.5 *10-3=V2

TEOREMA DE BERNOULLI_______________________________

Mediante el supuesto de que el flujo es permanente, es decir que la velocidad de una partícula no depende del tiempo sino de su posición y de que el fluido es perfecto (viscosidad nula) e incompresible, entonces la energía mecánica del fluido es constante:

Em=Ep+Eg+Ec=PV+mgz+1/2mEnergía hidráulica

Como el cálculo de las energías es difícil debido a que tenemos que saber el valor de volumen y de masa de fluido que pasa, nos referimos a la energía específica o carga “H”, que es la energía por unidad de peso de la masa fluida.

H=P/+z+Energía hidráulica

En realidad la carga “H” no es constante debido a que existe una pérdida de energía en forma de calor provocada por la viscosidad del fluido que da lugar a fuerzas de rozamiento entre las capas adyacentes de fluido.

Seminario Pontificio Menor

Dpto. de Física

2001

LA ENERGIA HIDRAULICA

Energía hidráulica

…Y su aplicación en la Física

F

P = F/A

A

f

Prensa hidráulica

F/A = f/a

a

Vídeos relacionados