Econometría

Modelos Arch y Garch. Garch exponencial. Modelos anidados y no anidados. Estadística

  • Enviado por: Lorena Ortiz Castro
  • Idioma: castellano
  • País: Perú Perú
  • 16 páginas
publicidad
cursos destacados
El Método Harvard de Negociación
El Método Harvard de Negociación
Extensamente empleado en todos los sectores, desde el ámbito laboral al mercantil pasando por conflictos sociales o...
Ver más información

Planea con la bolsa tu futuro
Planea con la bolsa tu futuro
¿Sabe qué es inteligencia financiera? Aprenda a utilizarla de una mejor manera dentro de sus finanzas personales.
Ver más información

publicidad

MODELOS ARCH Y GARCH

MODELO ARCH

El Modelo de Regresión Arch puede ser una aproximación a un Sistema más complejo en el que no hubiera factores innovacionales con Heterocedasticidad condicional.

Los modelos estructurales admiten, en multitud de ocasiones, una especificación tipo Arch infinita que determina con parámetros cambiantes, lo que hace a este tipo de modelos capaces de contrastar la hipótesis de permanencia estructural que supone tilia de las hipótesis de partida y condición necesaria para la validez del modelo econométrico tradicional.

En definitiva, la clave de estos modelos esta en considerar la información pasada de la variable y su volatibilidad observada como factor altamente explicativo de su comportamiento presente y por extensión lógica, de su futuro predecible. Estadísticamente, esta conclusión se refleja en tener en cuenta la esperanza condicional (conocida y fija la información hasta el momento inmediatamente anterior) del cuadrado de una variable (la expresión de su varianza si su media es nula).

Especificación

El modelo ARCH en media es una reproducción del esquema del modelo de regresión ARCH añadiendo la desviación típica condicional de los errores como explicativa de la media de un modelo uniecuacional general. Este desarrollo del modelo de Engle (1982) fue introducido por Engle, Lilien y Robins (1986) y se específica del siguiente modo:

Sea el proceso y, con las siguientes características:

yt = | Xtt ! (Xt + ht, ht2)

h t 2 = ´Wt + ´Zt Ec. 1

Donde:

  • Zt : vector de (<j X 1) variables endógenas desplazadas.

  • Xt: vector de (k x 1) variables exógenas puras del modelo.

  • t = yt - Xt - ht; error en el período t

  • nt = (2t-1, …., 2t-q ) : vector de q xl variables

  • W: matriz de p x q constante que sirven para introducir restricciones en el número de valores de la anterior que sirven para determinar la varianza de cada yt. Para el caso más restringido, W, sería la matriz identidad.

  • : vector de (q x 1) de parámetros en la ecuación de la varianza que modifican los valores cuadrados del error.

  • : vector de (j x 1) de parámetros de la varianza

  • : vector de (k x 1) de parámetros de la media, modificadores de las variables exógenas del modelo.

  • : vector de (1 x 1) de parámetros de la media, que modifican a la desviación típica del error como explicativa del modelo general

En definitiva, se está escribiendo le forma matricial de un modelo explicado por “k” variables exógenas puras y la desviación típica de la perturbación aleatoria, que, a su vez, viene explicada por “q” valores del error al cuadrado desplazados y “j” por desplazamientos de la endógena y.

yt = 1X11 + 2X21 + ……….+ hX11 + tht + Ut

h2t = o + 1(w12t-1 + w22t-2 + ….+ wq2t-q) + 1Yt-1 + 2Yt-2 + ....+ pYt-j

Todos los vectores de parámetros anteriores pueden combinarse en una sola matriz  = (´, ´´, ) que tendrá orden (m x l), donde m = q+j+k+1

Estimación

Si contarnos con valores iniciales de los datos, la función logaritmo de versosimilitud del modelo nombrado como ARCH-M se puede escribir como (prescindiendo de términos constantes):

L() =  Lt(); Lt() = -log ht - 'Econometría'
Ec. 2

Las condiciones de primer orden para el valor máximo verosímil de esta función son:

'Econometría'
Ec. 3

En la ecuación precedente, las derivadas parciales de los parámetros sirven únicamente para identificar cuales están incluidos en una ecuación concreta y cuales no, siendo simplemente un vector de ceros y unos.

Para la estimación de este modelo, habrá que tener en cuenta que la varianza condicional se ha definido en función de innovaciones anteriores y que la ecuación básica también depende de la desviación típica de está. Por ello, será necesario estimar la derivada parcial de la varianza respecto a los parámetros de forma recursiva ("h2t/"). Los creadores del ARO H-M proponen iniciar este sistema recursivo con la estimación inicial de la Ec. 3 sin tener en cuenta la dependencia de la varianza de los parámetros. Es decir, maximizando solamente el valor del segundo sumatorio para dar unos valores iniciales del error.

Si se denomine el vector ¡la de las derivadas del logaritmo de verosimilitud como S, cada una de sus filas tendrá la expresión: [S]ti = "Lt/"t, pudiendo escribirse la condición de máximo (valores que anulan la primera derivada) como:

"Lt / " = S´t = 0

donde i es un vector de unos de orden (T x 1).

Expresado el hessiano (matriz de información o de segundas derivadas) como la suma de los t logaritmos de verosimilitud, se puede escribir como:

t = -E("2Lt/""´)

Para el que la matriz de información, media de todos los hessianos, se expresa de forma consistente como:

 = -E(S´S / T)

De cara a la estimación de los parámetros, los autores proponen el sistema iterativo de Bemdt y otros (1974), según el cual, el algoritmo de resolución seria:

i+1 = ´ + (S´S)-1 S´t Ec. 4

En el cual, S es la matriz de primeras derivadas evaluada en el valor del parámetro i y  es el valor o criterio de convergencia elegido que marca el diferencial entre dos resultados de estimación para llegar al resultado final, ajustado inicialmente a la unidad.

Bajo restricciones de regularidad y supuesta una distribución normal, esta expresión cumple la propiedad expresada por Crowder (1976) de:

(S´S)1/2 (* - o) ! N(0,1) Ec. 5

Donde se expresa la diferencia entre el parámetro estimado según la expresión previa y el máximo verosímil.

Los mismos autores del modelo ARCH-M entienden que se puede contrastar el valor obtenido en la estimación de los parámetros a partir del Multiplicador de Lagrange, sobre la ecuación anterior Ec. 5). El contraste se especificaría según la siguiente ecuación:

LM = i´ S0(S0'S0)-1S0'i = TRo2

En el cual, la matriz S° es la matriz de primeras derivadas evaluada para el parámetro estimado °. La R20 será el coeficiente logrado en la regresión en la matriz S bajo la hipótesis nula de no existencia de proceso ARCH. Este contraste está asintóticamente distribuido como una con tantos grados de libertad como restricciones y cuando la hipótesis nula es cierta. Este contraste se aplica sobre el valor de la primera iteración

de la Ec. 4, propuesta para la estimación de los parámetros y que se inicia con el valor de la hipótesis nula.

MODELO GARCH

Los modelos GARCH exponenciales nacen a partir de la publicación de Daniel Nelson (1991) sobre heterocedasticidad condicional en los modelos de rentabilidad de activos. Dicho autor propone una nueva forma funcional a partir de la observación de las deficiencias de los ya ampliamente actualizados de los modelos tipo ARCH. En su artículo critica tres elementos de los procesos GARCH:

  • Las restricciones de no negatividad de los parámetros son difíciles de lograr en muchas ocasiones.

  • Los modelos GARCH no permiten estimar convenientemente el efecto de apalancamiento financiero que aparece en la realidad.

  • Los modelos IGARCH son difíciles de llevar a la práctica, siendo confuso el término de persistencia en varianza condicional acuñado por Engle y Bollerslev.

En primer lugar, Nelson cita la importancia de considerar diferentes efectos en la estimación de la varianza condicional según la innovación en el periodo anterior sea negativa o positiva. Es decir, es necesario hablar de efectos asimétricos en función del signo de la perturbación en el período anterior, respondiendo a lo empíricamente observado, por ejemplo, en los mercados financieros: se produce un aumento de la volatilidad mayor cuando la “innovación” del período previo fue negativa que cuando la “Innovación” en el período anterior fue positiva.

En segundo lugar, Nelson crítica el efecto expansivo de los modelos ARCH tradicionales. El hecho de que los parámetros deban ser necesariamente positivos en las formulaciones de ARCH y GARCH, produce un efecto explosivo y siempre creciente en la estimación a futuro. La realización de un valor de la varianza condicional positiva en un período “t” (2t) produce una estimación siempre positiva para la estimación de ht+m para cualquier m " 1 eliminando la posibilidad de un comportamiento aleatorio oscilatorio en el futuro.

En tercer lugar, Nelson agrega que la necesidad de contar con parámetros positivos produce dificultades para la estimación, como ya ponían de manifiesto Engle, Lilien y Robins (1987), imponiendo al sistema ARCH una estructura de j parámetros ponderados de forma decreciente de cara a realizar la estimación.

Por último, los modelos ARCH tradicionales encuentran dificultades en la medición de la persistencia de un `shock” pasado en los valores de la varianza condicional. En diferentes estudios citados por el mismo Nelson, se pone de manifiesto que si el impacto en la volatilidad de un determinado “shock' persiste indefinidamente, se transformaría completamente la estructura temporal de la rentabilidad, produciendo un fuerte impacto sobre las inversiones en bienes de larga duración. (Sobre este particular, destaca el estudio de Poterba y Surnrners (1986).

ESPECIFICACIÓN DEL MODELO GARCH EXPONENCIAL (EGARCH)

Fruto de las críticas antes comentadas a las deficiencias de los modelos tipo ARCH tradicionales para recoger la realidad empírica suministrada por las variables financieras, Nelson propone una nueva especificación más general sobre la varianza condicional heterocedástica que da nombre a los GARCH exponenciales o EGARCH (p,q).

Al igual que los modelos ARCI-] tradicionales aseguran la estimación de valores positivos en la varianza condicional con una estructura lineal de dependencia que incorpora parámetros positivos sobre variables explicativas aleatorias positivas (tanto los residuos al cuadrado como ¡a propia varianza condicional desplazada lo son), Nelson propone la estimación del modelo en logaritmos, con lo que también existe probabilidad uno de obtener valores de la varianza positivos, aún cuando algún o algunos parámetros no sean positivos:

yt = tht1/2

log ht = t + 'Econometría'
'Econometría'

g(t) = t + [|t| - E(|t|)]

Con esta formulación quedan corregidas las deficiencias que, sobre el modelo tipo ARCH tradicional, señalaba el autor y que se comentaban en el epígrafe anterior:

  • Por un lado, ya ha quedado patente la cobertura de la necesidad estadística de obtener valores de la varianza estimada siempre positivos al realizar una formulación en logaritmos, hecho que ya se había producido en los comentarios de Pantula (1986) y Geweke (1986).

  • La respuesta asimétrica al diferente signo de la innovación previa en el modelo viene perfectamente recogida por la especificación dada a la función g(.) anterior. Para valores negativos de t, la función g(t) es lineal y con tendencia ( + ) y, para valores positivos, es ( - ). El segundo sumando de la definición de la función g(.) es el determinante de la asimetría ya que marca la diferencia entre el valor realizado de la innovación y su valor esperado. Esta diferencia obviamente puede ser positiva o negativa, incorporando mayor o menor volatilidad (mayor o menor varianza condicional) en función de su signo.

  • La objeción hecha a los modelos ARCH tradicionales de no permitir comportamientos a futuro oscilantes queda salvada en esta especificación logarítmica, donde los parámetros no tienen porqué ser positivos en todos los casos.

  • Respecto a la persistencia de los “shocks”, la estructura lineal del modelo planteado permite contrastar fácilmente la estacionariedad y la ergodicidad. El ln(ht) será estrictamente ergódico y estacionario en la medida en que el efecto o “shock” de innovaciones pasadas se elimine lo suficientemente rápido. La condición de estacionariedad de este proceso es la misma que para un ARMA de orden infinito (la especificación dada no es más que un modelo de medias móviles de orden infinito), con lo cual basta con comprobar que los valores de los parámetros obtenidos sean, en suma, menor que uno.

De cara a mantener la misma signatura que en el resto de los modelos comentados, lo dicho anteriormente, escribiendo los valores estandarizados de las perturbaciones aleatorias, se puede rescribir del siguiente modo para lo que sería un EGARCH (1,1):

yt = t h1/2t

loght = o + 1 log (ht-1) + 1 'Econometría'

donde podremos distinguir claramente varios componentes:

  • el de la varianza heterocedástica: 1 log (ht-1)

  • el del valor autorregresivo de la pertubación:  'Econometría'

  • el efecto asimétrico: 'Econometría'
    ,donde i = 1 Si t-1 <0

0 Si t-1 >0

Con ello se pone de manifiesto que la formulación de Nelson parte el valor del parámetro que acompaña a la perturbación aleatoria en aquel debido al signo y aquel debido a su propia naturaleza.

La segunda gran aportación del documento seminal de los modelos EGARCH hace referencia a la función de distribución de la perturbación aleatoria. Con frecuencia, las series a las que se aplica el modelo tipo ARCH muestran una distribución con mayor apuntamiento que el de una normal y con colas “más gruesas”. Es por ello que se plantea aquí una forma de la función de densidad del proceso que admita, como caso especial, una distribución normal; pero que, al tiempo, permita otros tipos de funciones.

Escrito el modelo EGARCH como un proceso ARMA obtendríamos ¡a siguiente expresión:

ln(ht) = t + 'Econometría'
g (t-1)

donde se asume que tanto 1-"t-1 …p iy´ como 1 + "t-1 …p iy´ no tienen raíces unitarias. Con ello, la varianza estimada que se sigue de la expresión anterior (exp(-)ht) y.

MODELOS ANIDADOS Y NO ANIDADOS

MODELOS ANIDADOS

Estos modelos se los reconoce o para saber que están anidados se utiliza la prueba F y una prueba T estas son pruebas de hipótesis anidadas, por ejemplo.

Modelo A: Y = B1 + B2 X2 + B3X3 + B4X4 + B5X5 + U

Modelo B: Y = B1 + B2X2 + B3X3 + U

En este caso se dice que el modelo 13 esta anidado en el modelo A porque es un caso especial del modelo A: si se estima el modelo A y se prueba la hipótesis de que B4 = B5 = 0 y no se rechaza con base en , digamos, la prueba F, el modelo A se reduce al modelo B. si se añade la variable X4 al modelo B, entonces el A se reduce al B, si B5 es cero; en este caso se utilizo la prueba T para probar la hipótesis de que el coeficiente de X5 es cero.

MODELOS NO ANIDADOS

Existen dos métodos para probar hipótesis no anidadas. El método de discriminación el cual utiliza la bondad de ajuste para elegir entre uno o más modelos dados. Y el otro es método es el de discernimiento el cual recoge información de otros modelos para hacer la investigación. Ejemplo:

Modelo A: Y= &1 + &2X2 + &3X3 + U

Modelo B: Y= B1 + B2Z2 + B3Z3 + V

Se puede observar q las X y las Z son variables distintas. Lo cual nos dice que los modelos A y B son no anidados porque uno no puede derivarse como caso especial del otro.

PRUEBA DE HIPÓTESIS NO ANIDADAS

De acuerdo con Harvey, existen dos métodos para probar hipótesis no anidadas:

1) El método de discriminación, en donde dados dos o más modelos rivales, uno elige un modelo con base en criterios de bondad de ajuste.

2) El método de discernimiento (es mi terminología), en donde al investigar un modelo, se toma en cuenta la información proporcionada por otros modelos.

El método de discriminación

Considérense los modelos C y D anteriores. Puesto que ambos tienen la misma variable dependiente, se puede elegir entre dos (o más) modelos con base en algún criterio de bondad de ajuste, como R'Econometría'
o R'Econometría'
ajustada, previamente analizado. Pero téngase en cuenta que al comparar dos o más modelos, la regresada debe ser la misma. Además de tales criterios, existen otros más que también se sueñen utilizar. Entre ellos están: el criterio de información de Akaike (CIA), el criterio de información DE Sachwarz (CIS), y el criterio C'Econometría'
de Mallows.

El software más moderno de estadística contiene uno o más de tales criterios intercalados en sus rutinas de regresión. En la última sección de este capitulo se ilustraran los criterios anteriores utilizando un ejemplo ampliado. Con base en uno o más de tales criterios, Selecciona finalmente un modelo que tiene la máxima R'Econometría'
, o el valor más bajo de CIA o del CIS.

El método de discernimiento

La prueba F no anidada o la prueba F incluyente, Considérese los modelos C y D presentados antes. ¿Cómo se elige entre ambos modelos? Para tal propósito, se supone que se estima el siguiente modelo aninado o híbrido:

Modelo F: Y'Econometría'
= 'Econometría'

Obsérvese que el modelo F anida o incluye a los modelos C y D. Pero nótese que C no está anidado en D, y que éste no está anidado en C, por lo que no son modelos anidados.

Ahora bien si el modelo C es correcto, 'Econometría'
= 0, en tanto que D es correcto si 'Econometría'
= 0. Esta prueba se puede hacer mediante la prueba F usual, de aquí que se le conozca como prueba F no anidada.

Sin embargo, surgen problemas con este procedimiento de prueba. En primer lugar, si las X y las Z están demasiado correlacionadas, entonces como se observó en el capitulo de multicolinealidad es muy probable que una o mas sean en lo individual estadísticamente, aunque con base pendientes sean simultáneamente nulos. En este caso, no se tiene forma de decidir si el modelo C o D sea el correcto. En segundo lugar, existe otro problema supóngase que se elige el modelo C como la hipótesis de referencia o modelos, y se descubre que todos sus coeficientes son significativos. Ahora, se agregan 'Econometría'
, o ambas, al modelos y se tiene que al utiliza la prueba F su contribución incrementan a la suma explicada de cuadrados (SEC) es estadísticamente insignificantes. Por lo tanto, se elige el modelo C.

Pero, supóngase que se eligió el modelo D como modelo de referencia y se encontró que todos sus coeficientes eran estadísticamente significativos. Pero cuando se agregó X'Econometría'
O X'Econometría'
, o ambas, a este modelo, de nuevos se observó que al utilizar la prueba F, su contribución incremental a la SEC era insignificante. En consecuencia, se habría elegido el modelo D como el correcto. Por tanto, “la elección de la hipótesis de referencia podría determinar el resultado de la elección del modelo”.

La prueba J:

Esta prueba surge a raíz del problema de procedimiento de la prueba F no anidada. Este nos ayuda a comparar las hipótesis de dos modelos, pero este trae algunos problemas que se dan cuando se utiliza el estadístico t para probar la significancia de la variable Y. el estadístico t tiene la distribución normal estándar solo de manera asintótica, es decir, para muestras grandes. Por consiguiente, la prueba J quizá no sea muy poderosa para muestras pequeñas, ya que tiende a rechazar la hipótesis o el modelo verdadero con una frecuencia mayor de la que debería.

La prueba de J de Davison - Mackinnon.

En vista de los problemas que se acaban de mencionar en el procedimiento de prueba F no anidado, se han sugerido algunas alternativas. Una es la prueba J de Davison-MAcKinnon. Para ilustrala, se supone que se desea comparar la hipótesis, o modelo C, con la hipótesis, o moldeo D. La prueba J procede de la siguiente forma:

  • Se estima el modelo D y de él se obtienen los valores estimados 'Econometría'

  • Se agrega el valor Y predicho en el paso 1, como una regresora adicional al modelo C y se estima el siguiente modelo:

  • 'Econometría'
    (13.8.5)

    Donde los valore 'Econometría'
    se obtiene del paso 1. Este modelo es un ejemplo del principio de inclusión, como en la metodología de Hendry.

  • Utilizando la prueba T, se prueba la hipótesis, de que 'Econometría'
    .

  • Si la hipótesis de que 'Econometría'
    no se rechaza, se puede aceptar (es decir, no se rechaza)el modelo, ya que 'Econometría'
    incluida en (13.8.5), que representa la influencia de las variables no consideradas en el modelo C, no tiene un poder explicativo adicional, más allá de lo que contribuye el modelo C. En otras palabras, el modelo C incluye al modelo D, en el sentido de que este último no contiene ninguna información adicional que mejor el desempeño de C. Por el mismo tenor, si la hipótesis nula se rechaza, el modelo C no puede ser el verdadero (¿por qué?).

  • Ahora se cambian los papeles de la hipótesis, o de los modelos C y D. Ahora se estima primero el modelo C, se utilizan los valores estimados Y de este modelo como regresoras en (13.8.5), se repiten el Paso 4 y se decide si se prefiere o no el modelo D, respecto al C. De manera más especifica, se estima el siguiente modelo:

  • 'Econometría'
    (13.8.6)

    Donde 'Econometría'
    son lo valores estimados Y del modelo C. Ahora se prueba la hipótesis de que 'Econometría'
    . Si no se rechaza esta hipótesis, se elige el modelo D, en vez del C. Si la hipótesis de que 'Econometría'
    . Se rechaza, entonces se prefiere C en vez de D, ya que este último no tiene un mejor desempeño que C.

    El criterio R2

    Es una medida de la bondad de ajuste que se da en un modelo de regresión.

    Este se encuentra o se da entre 0 y 1. Mientras más cerca este de 1, será mejor el ajuste. Pero al mismo tiempo surgen algunos problemas, R2 mide la bondad de ajuste dentro de la muestra, en el sentido de saber que tan cercano esta un valor estimado Y de su valor real en la muestra dada. No hay garantía de que pronosticara bien las observaciones fuera de la muestra.

    Criterio de información Schwarz (CIS)

    El cia o cis nos dice mientras mas pequeño sea su valor mejor será el modelo. Este se puede utilizar para comparar el desempeño del pronóstico dentro de la muestra y fuera de la muestra de un modelo.

    Mininos cuadrados recursivos

    Los MCR constituyen una herramienta útil con la series de tiempo, puesto que el tiempo esta ordenado cronológicamente. También es útil para el diagnóstico en los datos transversales, donde los datos están ordenados por alguna variable de tamaño o escala.

    Criterio de Información Akaike (CIA)

    La idea de imponer una penalización por añadir regresores al modelo se ha desarrollado más en el criterio CIA, el cual se define como:

    CIA = e2k/n 'Econometría'

    Donde k es el número de regresoras (incluyendo la intersección) y n es el número de observaciones. Por conveniencia matemática, se expresa como:

    ln CIA = 'Econometría'

    Donde ln CIA = el logaritmo natural de CIA y 2k/n = factor de penalización.

    Algunos libros de texto y paquetes de software definen al CIA sólo en términos de su transformada logarítmica, por lo que no es necesario escribir ln antes de CIA. Como puede verse de la fórmula, CIA impone una mayor penalización que 'Econometría'
    por añadir más regresoras. Al comparar dos o más modelos, se preferirá el que tenga el menor CIA. Una ventaja del CIA es que resulta útil no sólo para el desempeño de la predicción dentro de la muestra, sino también para el de la predicción fuera de la muestra de un modelo de regresión. Asimismo, es útil para los modelos anidados y no anidados. También se ha utilizado para determinar la longitud del rezago en el modelo AR(p).